Homework \#4

phy 5246
due: Friday, October 13 (in class)
P1: A particle of mass m moves in a central force field given by the potential

$$
V(r)=-k \frac{e^{-a r}}{r} ; \quad k>0, a>0 .
$$

(a) Determine the effective one-dimensional problem for the radial coordinate. Sketch the effective potential for various values of the angular momentum ℓ and discuss qualitatively the possible orbits of the system.
(b) Determine the condition for a stable circular orbit. This condition should be expressed in terms of the radius of the orbit and the constant a.
(c) Find the period of small radial oscillations about these circular orbits.

P2: Let F be a fixed point (the focus) and ℓ the fixed line (the directrix) which does not pass through F. Without loss of generality, you can choose them to be at the origin and at $x=d$, respectively (see the figure). Let e be a positive number (the eccentricity) and consider the set of points P that satisfy

$$
\frac{\text { distance form } P \text { to } F}{\text { distance form } P \text { to } \ell}=e \text {. }
$$

a) Show that the set of all points that satisfy the above, is described by the polar equation

$$
r=\frac{e d}{1+e \cos \theta} .
$$

b) Show that if $0<e<1$, the equation is an ellipse of eccentricity e by recasting the above into the equation

$$
\frac{(x+c)^{2}}{a^{2}}+\frac{y^{2}}{a^{2}-c^{2}}=1 .
$$

Determine a and c.
c) Show that if $e=1$, the equation represents a parabola given by

$$
y^{2}=-4 \frac{d}{2}\left(x-\frac{d}{2}\right) .
$$

d) Show that if $e>1$, the equation is a hyperbola of eccentricity e by recasting the above into the equation

$$
\frac{(x-c)^{2}}{a^{2}}-\frac{y^{2}}{c^{2}-a^{2}}=1 .
$$

Determine a and c.

From Goldstein Poole, and Safko, Classical Mechanics (Third Edition):
P3: Chapter 3 Problem 11.
P4: Chapter 3 Problem 14.

