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Abstract

In this thesis I present a study of the interplay of vortices and the fermionic quasi-

particle states in a quasi 2-dimensional d-wave superconductors, such as high temper-

ature cuprate superconductors. In the first part, I start by analyzing the quasiparticle

states in the presence of the magnetic field induced vortex lattice. Unlike in the s-

wave superconductor, there are no vortex bound states, rather all the quasiparticle

states are extended. By using general arguments based on symmetry principles and

by direct (numerical) computation, I show that these extended quasiparticle states

are gapped. In addition, they are characterized by a topological invariant with regard

to their spin Hall conduction. Finally, I relate the spin Hall conductivity tensor σspinxy

to the thermal Hall conductivity κxy by deriving the appropriate “Wiedemann-Franz”

law. In the second part, I analyze the fluctuations around an ordered d-wave super-

conductor (in the absence of the external magnetic field), focusing on the interaction

between the low energy nodal fermions and the vortex-antivortex phase excitations.

It is shown that the corresponding low energy effective theory for the nodal fermions

in the normal (non-superconducting) state is QED3 or quantum electrodynamics in

2+1 space time dimensions. The massless U(1) gauge field encodes the topological

interaction between the quasiparticles and the hc/2e vortices at long wavelengths.

I analyze the symmetries, correlations and stability of this state. In particular, I

study the role of Dirac cone anisotropy and residual interactions in QED3 as well as

the physical meaning of the chiral symmetry breaking. Remarkably, the spin density

wave corresponds to an instability of a phase fluctuating d-wave superconductor.
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Chapter 1

Introduction

The properties of matter at low temperature amplify nature’s most fascinating

and least comprehensible laws: the laws of quantum mechanics. This amplification

process occurs via a principle of symmetry breaking: when the available phase space

is sufficiently restricted, interacting systems with a macroscopically large number of

degrees of freedom tend to seek a highly organized state. In other words, the low

energy state of a many particle system possesses less symmetry than the laws which

are obeyed by its constituents. A commonplace example are solids. Despite the

fact that the laws of quantum mechanics are invariant under spatial translation, the

atoms in a solid occupy a regular array which is only disrupted by small amplitude

vibrations and occasional dislocation defects. It is the translational symmetry that

is broken by the solid state of matter. This symmetry breaking has an important

ramification: the emergence of Goldstone modes, or long lived degrees of freedom,

which tend to restore the symmetry. In the case of a solid, this is embodied by the

emergence of transverse elastic waves. In addition, symmetry breaking generally leads

to stable topological defects; in solids these are lattice dislocations and disclinations.

While such topological defects are quite rare deep inside an ordered state, they can

be crucial in destroying the order near a phase transition.

A less commonplace example of symmetry breaking is a superconductor. While

the laws of quantum mechanics are invariant under a local U(1) transformation, i.e.

multiplication of the wavefunction by a space dependent single valued phase factor,
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the superconducting state is not. In a superconductor the many body wavefunction

acquires rigidity under a phase twist. This leads to most of the fascinating proper-

ties of superconductors such as the passage of current without any voltage drop, the

Meissner effect, or even the magnetic levitation. The density of low energy fermionic

excitations is generically appreciably reduced compared to the non-superconducting

state. The Goldstone mode that accompanies the symmetry breaking corresponds to

smooth (longitudinal) space-time variations of the phase of the many body wavefunc-

tion. On the other hand, 2π phase twists of the wavefunction, or vortices, are the

analog of the dislocations in the solid. They form the topological defects in the type-II

superconductors. At a phase transition, temperature T = Tc, such a superconductor

looses its phase rigidity due to the free motion of vortex defects. The temperature

interval around Tc in which this physics applies is typically barely detectable in the

conventional low Tc superconductors, but there is growing experimental evidence

that in the high Tc cuprate superconductors (HTS) vortex unbinding is the dominant

mechanism of the loss of long range order. In particular, the underdoped materials

appear to exhibit many characteristics associated with vortex physics, in some cases

all the way down to zero temperature! Such observations suggest that the quantum

analog of vortex unbinding occurs at the superconductor-insulator quantum phase

transition.

The underlying theme in this work is the interplay of vortices and the fermionic

quasiparticles, the single particle excitations of the superconductor. I start by briefly

reviewing the phenomenology of HTS. In Chapter 2, I analyze the quasiparticle states

in the presence of the magnetic field induced vortex lattice in a planar d-wave super-

conductor. Several interesting and non-trivial properties of such a state are derived.

In Chapter 3, I then go on to analyze the nature of the fermionic excitations in a

quantum phase disordered superconductor. It is shown that quantum unbinding of

hc/2e vortex defects produces gauge interactions between quasiparticles. The low

energy effective field theory for such a state is argued to be QED3 (2+1 dimensional

electrodynamics with massless fermions). This theory has a very rich structure: it

has a phase characterized by very strong interaction between fermions and the gauge

field, but in which no symmetries are broken. In addition it also has a broken symme-
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try phase in which the fermions gain mass. Remarkably, this state can be associated

with a spin density wave, a state adiabatically connected to an antiferromagnet, the

parent state of all cuprate superconductors.

1.1 Phenomenology of High Temperature Cuprate

Superconductors

High temperature cuprate superconductors were discovered by Bednorz and Müller

in 1986 [1]. Soon thereafter, Anderson pointed out three essential features of the new

materials [2]. First, they are quasi 2-dimensional with weakly coupled CuO2 planes

(Fig. 1.1). Second, the superconductor is created by doping a Mott insulator, and

third, Anderson proposed that the combination of proximity to a Mott insulator and

low dimensionality would cause the doped material to exhibit fundamentally new

behavior, impossible to explain by conventional paradigms of metal physics [2, 3].

In a Mott insulator, charge transport is prohibited not merely by the Pauli exclu-

sion principle (as in a band insulator), but also by strong electron-electron repulsion

that pins the electrons to the lattice sites. This insulating state is stable when there

is exactly one electron per each site in the valence band, since motion of electrons re-

quires energetically expensive double occupancy. Virtual charge excitations generate

a ”super-exchange” interaction that favors antiferromagnetic alignment of spins (Fig.

1.1).

Upon doping, the system becomes a weak conductor and eventually a super-

conductor, Fig. (1.2). However, the cuprates are the only Mott insulators which

become superconducting when doped [3]. It was established soon after the discovery

of HTS that the superconductivity is due to the electrons forming Cooper pairs (see

Fig. 1.3). However, unlike in conventional s-wave superconductors, the gap function

changes sign upon 90 degree rotation i.e. it has dx2−y2 symmetry. As such, it vanishes

at four points on the Fermi surface, leading to gapless Fermi points. These points

were identified by angle–resolved photoemission spectroscopy (ARPES) (Fig. 1.4). In

addition, several ingenious phase sensitive tests, based on Josephson tunneling, were
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Figure 1.1: (A) The unit cell of La2−xSrxCuO4 family of high temperature super-
conductors. It is believed that most of the interesting physics happens in the Cu-O2

plane, which extends in the a − b directions. The c−axis electronic coupling is very
small. In this family of materials, doping is achieved by replacing some of the La
atoms for Sr, or by adding interstitial oxygen atoms. This crystalline structure is
slightly modified in different high-Tc cuprates, but all share the weakly coupled Cu-
O2 planes. (B) Arrows indicate spin alignment in the antiferromagentic state, the
parent state of HTS. (Taken from [3])

developed to demonstrate the change of sign of the pairing amplitude (for a review

see [5]). The low energy properties of such d-wave superconductors are governed by

the excitations around the four nodal points. These correspond to nodal BCS quasi-

particles whose existence was demonstrated by several techniques, but most directly

by ARPES. These low energy BCS quasiparticles are responsible, for example, for the

linear in temperature depletion of superfluid density [6] or ”universal” longitudinal

thermal conductivity, which was demonstrated experimentally [7] to depend only on

the ratio of the quasiparticle velocity perpendicular and parallel to the Fermi surface

at the Fermi points.

The boundary in the phase diagram between the antiferromagnet and the super-

conductor corresponds to a fascinating phase: the pseudogap state. This state is not

a superconductor, but spectroscopically it is nearly indistinguishable from the super-

conductor as there is a suppression of single particle states at the Fermi surface as

well as the nodal points. While the spin fluctuations are gapped, the in-plane charge
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Figure 1.2: Phase diagram of electron and hole doped High Temperature supercon-
ductors showing the superconducting (SC), antiferromagnetic (AF), pseudogap and
metallic phases. (Taken from [4]).

transport seems unaffected, whereas the c-axis transport is suppressed. Moreover,

strong superconducting fluctuations seem to be prominent in this state. Especially

striking are the recent observations of anomalously large Nernst signal [8] above Tc in

single crystal underdoped cuprates (see Fig. 1.5). In this measurement, a magnetic

field is applied perpendicular to the CuO2 planes, along with a weak thermal gradi-

ents within the plane. One then measures the electrical voltage drop perpendicular to

the thermal current flow. The signal seen is nearly three orders of magnitude larger

than in conventional metals, not unlike in vortex liquid state. However, it is observed

several tens on Kelvin above Tc! This suggests that the physics of pseudogap is

dominated by strong pairing fluctuations.

In what follows, I shall first study the BCS quasiparticles of a d-wave supercon-

ductor with magnetic field induced array of Abrikosov vortices. I shall assume that we

are at T = 0 far away from any phase transition so that fluctuations can be neglected

(e.g. the region between optimally doped and slightly overdoped in the phase dia-

gram (1.2)). Later, I shall concentrate on the pseudogap region, and assume that it is

dominated by phase fluctuations, in particular that the pseudogap region is nothing

5



Figure 1.3: The magnetic flux threading through a polycrystalline YBCO ring, mon-
itored with a SQUID magnetometer as a function of time. The flux jumps occur in
integral multiples of the superconducting flux quantum Φ0 = hc/2e. This experi-
ment demonstrates that the superconductivity in high temperature cuprates is due
to Cooper pairing. (taken from [5])

but a phase disordered d-wave superconductor.
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Figure 1.4: The pairing gap of HTS has dx2−y2-wave symmetry (left). The points on
the Fermi surface at which the gap disappears (the nodal points) can be identified in
the angle resolved photoemission spectra (right) [4].
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Figure 1.5: Contours of the constant Nernst coefficient in the Temperature vs. doping
phase diagram. The units of the Nernst coefficient are nanoVolt per Kelvin per Tesla.
At low temperature and in the strongly underdoped region the Nernst signal is almost
three orders of magnitude greater than it would be in a normal metal. Such a large
signal is typically observed in the vortex liquid state, where it is associated with
Josephson phase-slips produced across the sample due to thermally diffusing vortices.
In this experiment, however, this signal is seen several tens of Kelvins above the
superconducting transition temperature Tc! [8]
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Chapter 2

Quasiparticles in the mixed state

of HTS

2.1 Introduction

In this section we give a brief review of the fermionic quasiparticle excitations in

the superconductors, both conventional and unconventional.

In conventional (s-wave) superconductors the effective attraction between elec-

trons is mainly due to exchange of phonons [9]. The evidence of the phonon mediated

interaction comes from the isotope effect i.e. the shift of the transition temperature

upon the replacement of the crystal ions with their isotopes. The electrons pair in

the lowest angular momentum channel, l = 0 or s-wave, and the pairing amplitude

does not vary appreciably around the Fermi surface. As a result, the single parti-

cle fermionic excitations (quasiparticles) are fully gapped everywhere on the Fermi

surface and the quasiparticle density of states vanishes below a specific energy. This

has profound consequences for the traditional phenomenology of superconductors.

The gap in the fermionic spectrum leads to the well known activated form of the

quasiparticle contribution to various thermodynamic and transport properties, and

can be directly observed in tunneling spectroscopy (see e.g. [5]). Furthermore, even

beyond the mean-field theory, the presence of the pairing gap in the superconducting

state cuts off the infra-red singularities which allows perturbative treatment of various
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types of quasiparticle interactions.

High temperature cuprate superconductors (HTS), however, are different. While

the origin of pairing remains an unsolved problem, the cuprates appear to be accu-

rately described by the dx2−y2-wave order parameter [10], i.e. the pairing happens

in l = 2 channel whose degeneracy is further split by the crystal field in favor of

dx2−y2 . As a result, quasiparticle excitations occur at arbitrarily low energy near the

nodal points. These low energy fermionic excitations appear to govern much of the

thermodynamics and transport in the HTS materials. This represents a new intel-

lectual challenge [11]: one must devise methods that can incorporate the low energy

fermionic excitations into the phenomenology of superconductors, both within the

mean-field BCS-like theory and beyond.

This challenge is not trivial and has many diverse components. Low energy qua-

siparticles are scattered by impurities in novel and unusual ways, depending on the

low energy density of states [12]. They interact with external perturbations in ways

not encountered in conventional superconductors, and these interactions give rise to

new phenomena [13, 14]. The low energy quasiparticles are thus expected to qual-

itatively affect the quantum critical behavior of HTS (see Chapter 3). Among the

many aspects of this new quasiparticle phenomenology a particularly prominent role

is played by the low lying quasiparticle excitations in the mixed (or vortex) state [15].

All HTS are extreme type-II systems and have a huge mixed phase extending from

the lower critical field Hc1 which is in the range of 10-100 Gauss to the upper critical

field Hc2 which can be as large as 100-200 T. In this large region the interactions

between quasiparticles and vortices play the essential role in defining the nature of

thermodynamic and transport properties.

Thermodynamic and transport properties are expected to be rather different for

distinct classes of unconventional superconductors. The difference stems from a com-

plex motion of the quasiparticles under the combined effects of both the magnetic

field B and the local drift produced by chiral supercurrents of the vortex state. For

example, in HTS the dx2−y2-wave nature of the gap function results in its vanishing

along nodal directions. Along these nodal directions the pair-breaking induced by

supercurrents has a particularly strong effect. On the other hand, in unconventional
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superconductors with the px±iy pairing, Sr2RuO4 being a possible candidate [16], the

spectrum is fully gapped but the order parameter is chiral even in the absence of

external magnetic field. This leads to two different types of vortices for two different

field orientations [17, 18].

Still, in all these different situations, the quantum dynamics of quasiparticles

in the vortex state contains two essential common ingredients. First, there is the

purely classical effect of the Doppler shift [13, 14]: quasiparticles’ energy is shifted

by a locally drifting superfluid, E(k) → E(k) − ~vs(r) · k, where vs(r) is the local

superfluid velocity. vs(r) contains information about vortex configurations, allowing

us to connect quasiparticle spectral properties to various cooperative phenomena in

the system of vortices [19, 20, 21]. The Doppler shift effect is not peculiar to the vortex

state. It also occurs in the Meissner phase [14] and is generally present whenever a

quasiparticle experiences a locally uniform drift in the superfluid velocity. Second,

there is also a purely quantum effect which is intimately tied to the vortex state:

as a quasiparticle circles around a vortex while maintaining its quantum coherence,

the accumulated phase through a Doppler shift is ±π. This implies that there must

be an additional compensating ±π contribution to the phase on top of the one due

to the Doppler shift in order for the wavefunction to remain single-valued [22]. The

required ±π contribution is supplied by a “Berry phase” effect and can be built in at

the Hamiltonian level as a half-flux Aharonov-Bohm scattering of quasiparticles by

vortices [22]. This interplay between the classical (Doppler shift) and purely quantum

effect (“Berry phase”) is what makes the problem of quasiparticle-vortex interaction

particularly fascinating.

Let us briefly review what is already known about the quasiparticles in the vortex

state. The initial theoretical investigations of gapped and gapless superconductors

in the vortex state were directed along rather separate lines. The low energy qua-

siparticle spectrum of an s-wave superconductor in the mixed state was originally

studied by Caroli, de Gennes and Matricon (CdGM) [23] within the framework of the

Bogoliubov-de Gennes equations [24]. Their solution yields well known bound states

in the vortex cores. These states are localized in the core and have an exponential

envelope, the scale of which is set by the BCS coherence length. The low energy
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end of the spectrum is given by εµ ∼ µ(∆2
0/EF ), where µ = 1/2, 3/2, . . . , ∆0 is the

overall BCS gap, and EF is the Fermi energy. This solution can be relatively straight-

forwardly generalized to a fully gapped, chiral p-wave superconductor. In this case

the low energy quasiparticle spectrum also displays bound vortex core states, whose

energy quantization is, however, modified relative to its s-wave counterpart, precisely

because of the chiral character of a px±iy-wave superconductor and the ensuing shift

in the angular momentum. For example, the low energy spectrum of quasiparticles

in the singly quantized vortex of the px±iy-wave superconductor, possesses a state at

exactly zero energy [17, 18].

By comparison, the spectrum of a gapless d-wave superconductor in the mixed

phase has become the subject of an active debate only relatively recently, fueled by

the interest in HTS. Naturally, the first question that arises is what is the analog

of the CdGM solution for a single vortex. It is important to realize here that the

situation in a dx2−y2 superconductor is qualitatively different from the classic s-wave

case [25]: when the pairing state has a finite angular momentum and is not a global

eigenstate of the angular momentum Lz (a dx2−y2 superconductor is an equal ad-

mixture of Lz = ±2 states), the problem of fermionic excitations in the core cannot

be reduced to a collection of decoupled 1D dimensional eigenvalue equations for each

angular momentum channel, the key feature of the CdGM solution. Instead, all chan-

nels remain coupled and one must solve a full 2D problem. The fully self-consistent

numerical solution of the BdG equations [25, 26] reveals the most important physical

consequence of this qualitatively new situation: the vortex core quasiparticle states in

a pure dx2−y2 superconductor are delocalized with wave functions extended along the

nodal directions. The low lying states have a continuous spectrum and, in a broad

range of parameters, do not seem to exhibit strong resonant behavior. This is in

sharp contrast with a discrete spectrum and true bound quasiparticle states of the

CdGM s-wave solution.

A particularly important issue in this context is the nature of the quasiparticle

excitations at very low fields, in the presence of a vortex lattice. This is a novel

challenge since the spectrum starts as gapless at zero field and at issue is the inter-

action of these low lying quasiparticles with the vortex lattice. This problem has
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been addressed via numerical solution of the tight binding model [27], a numerical

diagonalization of the continuum model [28] and a semiclassical analysis [13]. Gorkov,

Schrieffer [29] and, in a somewhat different context, Anderson [61], predicted that the

quasiparticle spectrum is described by a Dirac-like Landau quantization of energy

levels

En = ±~ωH
√
n, n = 0, 1, ... (2.1)

where ωH =
√

2ωc∆0/~, ωc = eB/mc is the cyclotron frequency and ∆0 is the

maximum superconducting gap. The Dirac-like spectrum of Landau levels arises from

the linear dispersion of nodal quasiparticles at zero field. This argument neglects the

effect of spatially varying supercurrents in the vortex array which were shown to

strongly mix individual Landau levels [31].

Recently, Franz and Tešanović (FT) [22] pointed out that the low energy quasi-

particle states of a dx2−y2-wave superconductor in the vortex state are most naturally

described by strongly dispersive Bloch waves. This conclusion was based on the par-

ticular choice of a singular gauge transformation, which allows for the treatment of

the uniform external magnetic field and the effects produced by chiral supercurrents

on equal footing. The starting point was the Bogoliubov-de Gennes (BdG) equation

linearized around a Dirac node. By employing the singular gauge transformation FT

mapped the original problem onto that of a Dirac Hamiltonian in periodic vector

and scalar potentials, comprised of an array of an effective magnetic Aharonov-Bohm

half-fluxes, and with a vanishing overall magnetic flux per unit cell. The FT gauge

transformation allows use of standard band structure and other zero-field techniques

to study the quasiparticle dynamics in the presence of vortex arrays, ordered or disor-

dered. Its utility was illustrated in Ref. [22] through computation of the quasiparticle

spectra of a square vortex lattice. A remarkable feature of these spectra is the per-

sistence of the massless Dirac node at finite fields and the appearance of the “lines

of nodes” in the gap at large values of the anisotropy ratio αD = vF/v∆, starting at

αD ' 15. Furthermore, the FT transformation directly reveals that a quasiparticle

moving coherently through a vortex array experiences not only a Doppler shift caused

by circulating supercurrents but also an additional, “Berry phase” effect: the latter
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is a purely quantum mechanical phenomenon and is absent from a typical semiclas-

sical approach. Interestingly, the cyclotron motion in Dirac cones is entirely caused

by such “Berry phase” effect, which takes the form of a half-flux Aharonov-Bohm

scattering of quasiparticles by vortices, and does not explicitly involve the external

magnetic field. It is for this reason that the Dirac-like Landau level quantization is

absent from the exact quasiparticle spectrum.

Further progress was achieved by Marinelli, Halperin and Simon [32] who pre-

sented a detailed perturbative analysis of the linearized Hamiltonian of Ref. [22].

They showed that the presence of the particle-hole symmetry is of key importance in

determining the nature of the spectrum of low energy excitations. If the vortices are

arranged in a Bravais lattice, they showed that, to all orders in perturbation theory,

the Dirac node is preserved at finite fields, i.e the quasiparticle spectrum remains

gapless at the Γ point. This result masks intense mixing of individual basis vectors

(in the case of Ref. [32] these are Dirac plane waves), including strong mixing of

states far removed in energy. The continuing presence of the massless Dirac node at

the Γ point after the application of the external field is thus not due to the lack of

scattering which is actually remarkably strong. Rather, it is dictated by symmetry:

Marinelli et al. demonstrated that the crucial agent responsible for the presence of

the Dirac node is the particle-hole symmetry, present at every point in the Brillouin

zone. The fact that it is the particle-hole symmetry rather than the lack of scat-

tering that protects the Dirac node is clearly revealed in the related problem of a

Schrödinger electron in the presence of a single Aharonov-Bohm half-flux, where the

density of states acquires a δ function depletion at k = 0 [33], thus shifting part of

the spectral weight to infinity due to remarkably strong scattering. The authors of

Ref. [32] also corrected Ref. [22] by showing that the “lines of nodes” must actually

be the “lines of near nodes” since true zeroes of the energy away from Dirac node

are prohibited on symmetry grounds. Still, these “lines” will act as true nodes in all

realistic circumstances, due to extraordinarily small excitation energies.

In this work I extend the original analysis which was based solely on the contin-

uum description by introducing a tight binding “regularization” of the full lattice BdG

Hamiltonian, to which we then apply the FT gauge transformation. The lattice for-
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mulation allows us to study what, if any, role is played by internodal scattering which

is simply not a part of the linearized description. This is important and necessary

since the straightforward linearization of BdG equations drops curvature terms and

results in the thermal Hall conductivity: κxy = 0[15, 34]. We employ the Franz and

Tešanović (FT) transformation so that we can use the familiar Bloch representation

of the translation group in which the overall chirality of the problem vanishes. This

should be contrasted with the original problem where the overall chirality is finite

and the magnetic translation group states must be used instead. Naively, it might

appear that after an FT singular gauge transformation the effects of the magnetic

field have somehow been transformed away since the new problem is found to have

zero average effective magnetic field. Of course, this is not true. The presence of

magnetic field in the original problem reveals itself fully in the FT transformed quasi-

particle wavefunctions. Alternatively, there is an “intrinsic” chirality imposed on the

system which cannot be transformed away by a choice of the basis. One manifestation

of this chirality is the Hall effect. The utility of the singular gauge transformation

in the calculation of the electrical Hall conductivity in the normal 2D electron gas

in a (non-uniform) magnetic field was realized by Nielsen and Hedeg̊ard [35]. They

demonstrated that using singularly gauge transformed wavefunctions one still obtains

the correct result, giving the electrical Hall conductance quantized in units of e2/h if

the chemical potential lies in the energy gap. In a superconductor, the question of

Hall response becomes rather interesting as there is a strong mixing between particles

and holes. Evidently, the electrical Hall response is very different from the normal

state, since charge is not conserved in the state with broken U(1) symmetry. There-

fore, as pointed out in Ref. [36], charge cannot be transported by diffusion. On the

other hand, the spin is still a good quantum number[36] and it is natural to ask what

is the spin Hall conductivity in the vortex state of an extreme type-II superconductor

[37]. Moreover, every channel of spin conduction simultaneously transports entropy

[36, 38, 39] and we would expect some variation of the Wiedemann-Franz law to hold

between spin and thermal conductivity.

As one of our main results, we derive the Wiedemann-Franz law connecting the

spin and thermal Hall transport in the vortex state of a d-wave superconductor. In
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the process, we show that the spin Hall conductivity, σsxy, just like the electrical

Hall conductivity of a normal state in a magnetic field, is topological in nature and

can be explicitly evaluated as a first Chern number characterizing the eigenstates

of our singularly gauge transformed problem [37, 40, 41]. Consequently, as T →
0, the spin Hall conductivity is quantized in the units of ~/8π when the energy

spectrum is gapped, which, combined with the Wiedemann-Franz law, implies the

quantization of κxy/T . We then explicitly compute the quantized values of σsxy for

a sequence of gapped states using our lattice d-wave superconductor model in the

case of an inversion-symmetric vortex lattice. Within this model one is naturally

led to consider the BCS-Hofstadter problem: the BCS pairing problem defined on a

uniformly frustrated tight-binding lattice. We find a sequence of plateau transitions,

separating gapped states characterized by different quantized values of σsxy. At a

plateau transition, level crossings take place and σsxy changes by an even integer [42].

Both the origin of the gaps in quasiparticle spectra and the sequence of values for

σsxy are rather different than in the normal state, i.e. in the standard Hofstadter

problem [43]. In a superconductor, the gaps are strongly affected by the pairing and

the interactions of quasiparticles with a vortex array. The sequence of σsxy changes

as a function of the pairing strength (and therefore interactions), measured by the

maximum value of the gap function ∆ [44].

2.2 Quasiparticle excitation spectrum of a d-wave

superconductor in the mixed state

The experimental evidence points towards well defined d-wave quasiparticles in

cuprate superconductors in the absence of the external magnetic field. This suggests

that to zeroth order fluctuations can be ignored and that one can think in terms of an

effective BCS Hamiltonian, the simplest of which is written on the 2-D tight-binding

lattice with the nearest neighbor interaction thus naturally implementing dx2−y2 pair-

ing. In question is then the response of such a superconductor to an externally applied

magnetic field B. All high temperature superconductors are extreme type-II form-
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ing a vortex state in a wide range of magnetic fields. This immediately sets up the

contrast between B = 0 and B 6= 0 situations: first, the problem is not spatially

uniform and therefore momentum is not a good quantum number and second, the

array of hc
2e

vortex fluxes poses topological constraint on the quasi-particles encircling

the vortices. Therefore, despite ignoring any fluctuations, the problem is far from

trivial and demands careful examination.

The natural starting point is therefore the mean-field BCS Hamiltonian written

in second quantized form [45]:

H =

∫

dx ψ†
α(x)

(

1

2m∗ (p − e

c
A)2 − µ

)

ψα(x)+

∫

dx

∫

dy[∆(x,y)ψ†
↑(x)ψ†

↓(y) + ∆∗(x,y)ψ↓(y)ψ↑(x)] (2.2)

where A(x) is the vector potential associated with the uniform external magnetic

field B, single electron energy is measured relative to the chemical potential µ, ψα(x)

is the fermion field operator with spin index α, and ∆(x,y) is the pairing field. For

convenience we will define an integral operator ∆̂ such that:

∆̂ψ(x) =

∫

dy∆(x,y)ψ(y). (2.3)

In the strictest sense, on the mean field level this problem must be solved self-

consistently which renders any analytical solution virtually intractable. On the other

hand, in the case at hand the vortex lattice is dilute for a wide range of magnetic

fields, and by the very nature of cuprate superconductors having short coherence

length, the size of the vortex core can be ignored relative to the distance between

the vortices. Thus, to the first approximation, all essential physics is captured by

fixing the amplitude of the order parameter ∆ while allowing vortex defects in its

phase. Moreover, on a tight-binding lattice the vortex flux is concentrated inside the

plaquette and thus the length-scale associated with the core is implicitly the lattice

spacing δ of the underlying tight-binding lattice. As shown in Ref.[45], under these

approximations the d-wave pairing operator in the vortex state can be written as a

differential operator:

∆̂ = ∆0

∑

δ

ηδe
iφ(x)/2 eiδ·p eiφ(x)/2. (2.4)
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The sums are over nearest neighbors and on the square tight-binding lattice δ =

±x̂,±ŷ; the vortex phase fields satisfy ∇×∇φ(x) = 2πẑ
∑

i δ(x−xi) with xi denoting

the vortex positions and δ(x−xi) being a 2D Dirac delta function; p is a momentum

operator, and

ηδ =

{

1 if δ = ±x̂
−1 if δ = ±ŷ.

(2.5)

The operator ηδ follows from the d-wave pairing: ∆ = 2∆0[cos(kxδx)− cos(kyδy)]. For

notational convenience we will use units where ~ = 1 and return to the conventional

units when necessary.

It is straightforward to derive the continuum version of the tight binding lattice

operator ∆̂ (see Ref.[45]):

∆̂ =
1

2p2
F

{∂x, {∂x,∆(x)}} − 1

2p2
F

{∂y, {∂y,∆(x)}} +

+
i

8p2
F

∆(x)
[

(∂2
xφ) − (∂2

yφ)
]

, (2.6)

but for convenience we will keep the lattice definition (2.4) throughout. One can

always define continuum as an appropriate limit of the tight-binding lattice theory.

With the above definitions, the Hamiltonian (2.2) can now be written in the Nambu

formalism as

H =

∫

dx Ψ†(x) Ĥ0 Ψ(x) (2.7)

where the Nambu spinor Ψ† = (ψ†
↑, ψ↓) and the matrix differential operator

Ĥ0 =

(

ĥ ∆̂

∆̂∗ −ĥ∗

)

. (2.8)

In the continuum formulation ĥ = 1
2m∗ (p − e

c
A)2 − µ, while on the tight-binding

lattice:

ĥ = −t
∑

δ

ei
� x+δ
x

(p− e
c
A)·dl − µ. (2.9)

t is the hopping constant and µ is the chemical potential. The equations of motion

of the Nambu fields Ψ are then:

i~Ψ̇ = [Ψ, H] = Ĥ0Ψ. (2.10)
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2.2.1 Particle-Hole Symmetry

The equations of motion (2.10) for stationary states lead to Bogoliubov-de Gennes

equations [45]

Ĥ0Φn = εnΦn. (2.11)

The solution of these coupled differential equations are quasi-particle wavefunctions

that are rank two spinors in the Nambu space, ΦT (r) = (u(r), v(r)). The single

particle excitations of the system are completely specified once the quasi-particle

wavefunctions are given, and as discussed later, transverse transport coefficients can

be computed solely on the basis of Φ’s. It is a general symmetry of the BdG equations

that if (un(r), vn(r)) is a solution with energy εn, then there is always another solution

(−v∗n(r), u∗n(r)) with energy −εn (see for example Ref. [24]).

In addition, on the tight-binding lattice, if the chemical potential µ = 0 in the

above BdG Hamiltonian (2.8), then there is a particle-hole symmetry in the following

sense: if (un(r), vn(r)) is a solution with energy εn, then there is always another

solution eiπ(rx+ry)(un(r), vn(r)) with energy −εn. Thus we can choose:

(

u
(−)
n (r)

v
(−)
n (r)

)

= eiπ(rx+ry)

(

u
(+)
n (r)

v
(+)
n (r)

)

, (2.12)

where + (−) corresponds to a solution with positive (negative) energy eigenvalue.

We will refer to this as particle hole transformation P̂H .

2.2.2 Franz-Tešanović Transformation and Translation Sym-

metry

In order to elucidate another important symmetry of the Hamiltonian (2.8), we

follow FT [22, 45] and perform a “bipartite” singular gauge transformation on the

Bogoliubov-de Gennes Hamiltonian (2.11),

Ĥ0 → U−1Ĥ0U, U =

(

eiφe(r) 0

0 e−iφh(r)

)

, (2.13)
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δ

magnetic unit cell

l
B

A

Figure 2.1: Example of A and B sublattices for the square vortex arrangement. The
underlying tight-binding lattice, on which the electrons and holes are allowed to move,
is also indicated.

where φe(r) and φh(r) are two auxiliary vortex phase functions satisfying

φe(r) + φh(r) = φ(r). (2.14)

This transformation eliminates the phase of the order parameter from the pairing

term of the Hamiltonian. The phase fields φe(r) and φh(r) can be chosen in a way

that avoids multiple valuedness of the wavefunctions. The way to accomplish this is

to assign the singular part of the phase field generated by any given vortex to either

φe(r) or φh(r), but not both. Physically, a vortex assigned to φe(r) will be seen by

electrons and be invisible to holes, while vortex assigned to φh(r) will be seen by holes

and be invisible to electrons. For periodic Abrikosov vortex array, we implement the

above transformation by dividing vortices into two groups A and B, positioned at

{rAi } and {rBi } respectively (see Fig. 2.1). We then define two phase fields φA(r) and

φB(r) such that

∇×∇φα(r) = 2πẑ
∑

i

δ(r − rαi ), α = A,B, (2.15)
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and identify φe = φA and φh = φB. On the tight-binding lattice the transformed

Hamiltonian becomes

ĤN =
∑

δ

{

σ3

(

−tei
� r+δ

r
(a−σ3v)·dleiδ·p − µ

)

+ σ1∆0ηδe
i

� r+δ

r
a·dleiδ·p

}

(2.16)

where

v =
1

2
∇φ− e

c
A; a =

1

2
(∇φA −∇φB), (2.17)

σ1 and σ3 are Pauli matrices operating in Nambu space, and the sum is again over

the nearest neighbors. Note that the integrand of Eq. (2.16) is proportional to the

superfluid velocities

vαs =
1

m∗ (∇φα − e

c
A), α = A,B. (2.18)

and is therefore explicitly gauge invariant as are the off-diagonal pairing terms.

From the perspective of quasiparticles vAs and vBs can be thought of as effective

vector potentials acting on electrons and holes respectively. Corresponding effective

magnetic field seen by the quasiparticles is Bα
eff = −m∗c

e
(∇×vαs ), and can be expressed

using Eqs. (2.15) and (2.16) as

Bα
eff = B − φ0ẑ

∑

i

δ(r − rαi ), α = A,B, (2.19)

where B = ∇× A is the physical magnetic field and φ0 = hc/e is the flux quantum.

We observe that quasi-electrons and quasi-holes propagate in the effective field which

consists of (almost) uniform physical magnetic field B and an array of opposing delta

function “spikes” of unit fluxes associated with vortex singularities. The latter are

different for electrons and holes. As discussed in [22, 45] this choice guarantees that

the effective magnetic field vanishes on average, i.e. 〈Bα
eff〉 = 0 since we have precisely

one flux spike (of A and B type) per flux quantum of the physical magnetic field.

Flux quantization guarantees that the right hand side of Eq. (2.19) vanishes when

averaged over a vortex lattice unit cell containing two physical vortices. It also implies

that there must be equal numbers of A and B vortices in the system.

The essential advantage of the choice with vanishing 〈Bα
eff〉 is that vAs and vBs can

be chosen periodic in space with periodicity of the magnetic unit cell containing an
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integer number of electronic flux quanta hc/e. Notice that vector potential of a field

that does not vanish on average can never be periodic in space. Condition 〈Bα
eff〉 = 0 is

therefore crucial in this respect. The singular gauge transformation (2.13) thus maps

the original Hamiltonian of fermionic quasiparticles in finite magnetic field onto a

new Hamiltonian which is formally in zero average field and has only ”neutralized”

singular phase windings in the off-diagonal components.

The resulting new Hamiltonian now commutes with translations spanned by the

magnetic unit cell i.e.

[T̂R, ĤN ] = 0, (2.20)

where the translation operator T̂R = exp(iR · p). We can therefore label eigenstates

with a “vortex” crystal momentum quantum number k and use the familiar Bloch

states as the natural basis for the eigen-problem. In particular we seek the eigenso-

lution of the BdG equation ĤNψ = εψ in the Bloch form

ψnk(r) = eik·rΦnk(r) = eik·r
(

Unk(r)

Vnk(r)

)

, (2.21)

where (Unk, Vnk) are periodic on the corresponding unit cell, n is a band index and k

is a crystal wave vector. Bloch wavefunction Φnk(r) satisfies the “off-diagonal” Bloch

equation Ĥ(k)Φnk = εnkΦnk with the Hamiltonian of the form

Ĥ(k) = e−ik·rĤNe
ik·r. (2.22)

Note, that the dependence on k, which is bounded to lie in the first Brillouin zone, is

continuous. This will become important when topological properties of spin transport

are discussed.

2.2.3 Vortex Lattice Inversion Symmetry and Level Crossing

General features of the quasi-particle spectrum can be understood on the basis

of symmetry alone. Since the time-reversal symmetry is broken, the Bogoliubov-

de Gennes Hamiltonian H0 (2.11) must be, in general, complex. According to the

“non-crossing” theorem of von Neumann and Wigner [46], a complex Hamiltonian can
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have degenerate eigenvalues unrelated to symmetry only if there are at least three

parameters which can be varied simultaneously.

Since the system is two dimensional, with the vortices arranged on the lattice,

there are two parameters in the Hamiltonian Ĥ(k) (2.22): vortex crystal momenta

kx and ky which vary in the first Brillouin zone. Therefore, we should not expect

any degeneracy to occur, in general, unless there is some symmetry which protects

it. Away from half-filling (µ 6= 0) and with unspecified arrangement of vortices in

the magnetic unit cell there is not enough symmetry to cause degeneracy. There is

only global Bogoliubov-de Gennes symmetry relating quasi-particle energy εk at some

point k in the first Brillouin zone to −ε−k.

In order for every quasiparticle band to be either completely below or completely

above the Fermi energy, it is sufficient for the vortex lattice to have inversion symme-

try. This can be readily seen by the following argument: Consider a vortex lattice with

inversion symmetry. Then, by the very nature of the superconducting vortex carrying

hc
2e

flux, there must be even number of vortices per magnetic unit cell and we are then

free to choose Franz-Tesanovic labels A and B in such a way that vA(−r) = −vB(r).

To see this note that the explicit form of the superfluid velocities can be written as

[45]:

vαs (r) =
2π~

m∗

∫

d2k

(2π)2

ik × ẑ

k2

∑

i

eik·(r−rα
i ), (2.23)

where α = A or B and rαi denotes the position of the vortex with label α. If the

vortex lattice has inversion symmetry then for every rAi there is a corresponding −rBi

such that rAi = −rBi . Therefore, under space inversion I

IvA(r) = vA(−r) = −vB(r). (2.24)

Recall that the tight-binding lattice Bogoliubov-de Gennes Hamiltonian written in

the Bloch basis (2.22) reads:

Ĥ(k) =
∑

δ

{

σ3

(

−tei
� r+δ

r
(a−σ3v)·dleiδ·(k+p) − µ

)

+ σ1∆0ηδe
i

� r+δ

r
a·dleiδ·(k+p)

}

(2.25)

where

v(r) ≡ 1

2

(

vA(r) + vB(r)
)

; a(r) ≡ 1

2

(

vA(r) − vB(r)
)

. (2.26)
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As before σ1 and σ3 are Pauli matrices operating in Nambu space and the sum is

again over the nearest neighbors. It can be easily seen that upon applying the space

inversion I to Ĥ(k) followed by complex conjugation C and iσ2 we have a symmetry

that for every εk there is −εk, that is:

−iσ2CI Ĥ(k) ICiσ2 = −Ĥ(k) (2.27)

which holds for every point in the Brillouin zone. Therefore, in order for the spectrum

not to be gapped, we would need band crossing at the Fermi level. But by the non-

crossing theorem this cannot happen in general. Thus, the quasi-particle spectrum of

an inversion symmetric vortex lattice is gapped, unless an external parameter other

than kx and ky is fine-tuned.

As will be established in the next section, gapped quasi-particle spectrum implies

quantization of the transverse spin conductivity σsxy as well as κxy/T for T sufficiently

low. Precisely at half-filling (µ = 0) σsxy must vanish on the basis of particle-hole

symmetry (see the next section). We can then vary the chemical potential so that

µ 6= 0 and break particle-hole symmetry. Hence, the chemical potential µ can serve

as the third parameter necessary for creating the accidental degeneracy, i.e. at some

special values of µ∗ the gap at the Fermi level will close (see Fig. 2.2). This results

in a possibility of changing the quantized value of σsxy by an integer in units of ~/8π

(Fig. 2.2) [42]. By the very nature of the superconducting state, we achieve plateau

dependence on the chemical potential. This is to be contrasted to the plateaus in the

“ordinary” integer quantum Hall effect which are due to the presence of disorder. In

our case, the system is clean and the plateaus are due to the magnetic field induced

gap and superconducting pairing.

Similarly, we can change the strength of the electron-electron attraction, which

is proportional to the maximum value of the superconducting order parameter ∆0

while keeping the chemical potential µ fixed. Again, as can be seen in Fig. 2.3, at

some special values ∆∗
0 the spectrum is gapless and the quantized Hall conductance

undergoes a transition.
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Figure 2.2: The mechanism for changing the quantized spin Hall conductivity is
through exchanging the topological quanta via (“accidental”) gap closing. The upper
panel displays spin Hall conductivity σsxy as a function of the chemical potential µ. The
lower panel shows the magnetic field induced gap ∆m in the quasiparticle spectrum.
Note that the change in the spin Hall conductivity occurs precisely at those values of
chemical potential at which the gap closes. Hence the mechanism behind the changes
of σsxy is the exchange of the topological quanta at the band crossings. The parameters
for the above calculation were: square vortex lattice, magnetic length l = 4δ, ∆ = 0.1t
or equivalently the Dirac anisotropy αD = 10.

2.3 Topological quantization of spin and thermal

Hall conductivities

Note, that the Hamiltonian in Eq. (2.2) is our starting unperturbed Hamiltonian.

In order to compute the linear response to externally applied perturbations we will

have to add terms to Eq. (2.2). In particular, we will consider two types of perturba-

tions in the later sections: First, partly for theoretical convenience, we will consider

a weak gradient of magnetic field (∇B) on top of the uniform B already taken into

account fully by Eq. (2.2). The ∇B term induces spin current in the superconduc-

tor [47]. The response is then characterized by spin conductivity tensor σs which
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Figure 2.3: The upper panel displays spin Hall conductivity σsxy as a function of the
maximum superconducting order parameter ∆0. The lower panel shows the magnetic
field induced gap in the quasiparticle spectrum. The change in the spin Hall conduc-
tivity occurs at those values of ∆0 at which the gap closes. The parameters for the
above calculation were: square vortex lattice, magnetic length l = 4δ, µ = 2.2t.

in general has non-zero off-diagonal components. Second, we consider perturbing

the system by pseudo-gravitational field, which formally induces flow of energy (see

[48, 49, 50, 51]) and allows us to compute thermal conductivity κxy via linear response.

2.3.1 Spin Conductivity

Within the framework of linear-response theory [52], spin dc conductivity can be

related to the spin current-current retarded correlation function DR
µν through :

σsµν = lim
Ω→0

lim
q1,q2→0

− 1

iΩ

(

DR
µν(q1, q2,Ω) −DR

µν(q1, q2, 0)

)

. (2.28)

The retarded correlation function DR
µν(Ω) can in turn be related to the Matsubara

finite temperature correlation function

Dµν(iΩ) = −
∫ β

0

eiτΩ〈Tτ jsµ(τ)jsν(0)〉dτ (2.29)
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as

lim
q1,q2→0

DR
µν(q1, q2,Ω) = Dµν(iΩ → Ω + i0). (2.30)

In the Eq. (2.29) the spatial average of the spin current js(τ) is implicit, since we are

looking for dc response of spatially inhomogeneous system. In the next section we

derive the spin current and evaluate the above formulae.

Spin Current

In order to find the dc spin conductivity, we must first find the spin current. More

precisely, since we are looking only for the spatial average of the spin current js(τ)

we just need its k → 0 component. In direct analogy with the B = 0 situation [38],

we can define the spin current by the continuity equation:

ρ̇s + ∇ · js = 0 (2.31)

where ρs = ~

2
(ψ†

↑xψ↑x−ψ†
↓xψ↓x) is the spin density projected onto z-axis. We can then

use equations of motion for the ψ fields (2.10) and compute the current density js

from (2.31).

In the limit of q → 0 the spin current can be written as (see A.2)

jsµ =
~

2
Ψ†VµΨ, (2.32)

where the Nambu field Ψ† = (ψ†
↑, ψ↓) and the generalized velocity matrix operator Vµ

satisfies the following commutator identity

Vµ =
1

i~
[xµ, Ĥ0]. (2.33)

The equation (2.33) is a direct restatement of the fact that spin can be transported by

diffusion, i.e. it is a good quantum number in a superconductor, and that the average

velocity of its propagation is just the group velocity of the quantum mechanical wave.

In the clean limit, the transverse spin conductivity σsxy defined in Eq. (2.28) is

σsxy(T ) =
~

2

4i

∑

m,n

(fn − fm)
V mn
y V nm

x

(εn − εm + i0)2
, (2.34)
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where fm =
(

1 + exp(βεn)
)−1

is the Fermi-Dirac distribution function evaluated at

energy εm. For details of the derivation see A.2. The indices m and n label quantum

numbers of particular states. The matrix elements V mn
µ are

V mn
µ =

〈

m
∣

∣Vµ
∣

∣n
〉

=

∫

dx (u∗m, v
∗
m)Vµ

(

un

vn

)

(2.35)

where the particle-hole wavefunctions um, vn satisfy the Bogoliubov-deGennes equa-

tion (2.11). Note that unlike the longitudinal dc conductivity, transverse conductivity

is well defined even in the absence of impurity scattering. This demonstrates the fact

that the transverse conductivity is not dissipative in origin. Rather, its nature is

topological.

In the limit of T → 0 the expression (2.34) for σsxy becomes

σsxy =
~

2

4i

∑

εm<0<εn

V mn
x V nm

y − V mn
y V nm

x

(εm − εn)2
. (2.36)

The summation extends over all states below and above the Fermi energy which, by

the nature of the superconductor, is automatically set to zero.

Vanishing of the Spin Conductivity at Half Filling (µ = 0)

It is useful to contrast the semiclassical approach with the full quantum mechan-

ical treatment of transverse spin conductivity. In semiclassical analysis the starting

unperturbed Hamiltonian is usually defined in the absence of magnetic field B. One

then assumes semiclassical dynamics and no inter-band transitions. In this picture, if

there is particle-hole symmetry in the original (B = 0) Hamiltonian, then there will

be no transverse spin (thermal) transport, since the number of carriers with a given

spin (energy) will be the same in opposite directions. In this context, similar argu-

ment was put forth in Ref. [15]. However, the problem of a d-wave superconductor

is not so straightforward. As pointed out in Ref.[45], in the nodal (Dirac fermion)

approximation, the vector potential is solely due to the superflow while the uniform

magnetic field enters as a Doppler shift i.e. Dirac scalar potential. Semiclassical

analysis must then be started from this vantage point and the above conclusions are
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not straightforward, since the quasiparticle motion is irreducibly quantum mechani-

cal.

Here we present an argument for the full quantum mechanical problem, without

relying on the semiclassical analysis. We show that spin conductivity tensor (2.34)

vanishes at µ = 0 due to particle hole symmetry (2.12). First note that the Fermi-

Dirac distribution function satisfies f(ε) = 1 − f(−ε). Therefore, the factor fm − fn

changes sign under the particle-hole transformation P̂H (2.12) while the denominator

(εm − εn)
2 clearly remains unchanged. In addition, each of the matrix elements V mn

µ

changes sign under P̂H . Thus the double summation over all states in Eq. (2.34)

yields zero.

Consequently the spin transport vanishes for a clean strongly type-II BCS d-wave

superconductor on a tight binding lattice at half filling. Due to Wiedemann-Franz

law, which we derive in the next section, thermal Hall conductivity also vanishes at

half filling at sufficiently low temperatures. Note that this result is independent of

the vortex arrangement i.e. it holds even for disordered vortex array and does not

rely on any approximation regarding inter- or intra- nodal scattering.

Topological Nature of Spin Hall Conductivity at T=0

In order to elucidate the topological nature of σsxy, we make use of the translational

symmetry discussed in Section 2.2.2 and formally assume that the vortex arrangement

is periodic. However, the detailed nature of the vortex lattice will not be specified and

thus any vortex arrangement is allowed within the magnetic unit cell. The conclusions

we reach are therefore quite general.

We will first rewrite the velocity matrix elements V mn
µ using the singularly gauge

transformed basis as discussed in Section 2.2.2. Inserting unity in the form of the FT

gauge transformation (2.13)

V mn
µ =

〈

m
∣

∣Vµ
∣

∣n
〉

=
〈

m
∣

∣U U−1VµU U−1
∣

∣n
〉

. (2.37)

The transformed basis states U−1
∣

∣n
〉

can now be written in the Bloch form as eik·r
∣

∣nk

〉

and therefore the matrix element becomes

V mn
µ =

〈

mk

∣

∣e−ik·rU−1VµUe
ik·r∣
∣nk

〉

=
〈

mk

∣

∣Vµ(k)
∣

∣nk

〉

. (2.38)
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We used the same symbol k for both bra and ket because the crystal momentum

in the first Brillouin zone is conserved. The resulting velocity operator can now be

simply expressed as

Vµ(k) =
1

~

∂Ĥ(k)

∂kµ
, (2.39)

where Ĥ0(k) was defined in (2.22). Furthermore the matrix elements of the partial

derivatives of Ĥ(k) can be simplified according to

〈

mk

∣

∣

∂Ĥ(k)

∂kµ

∣

∣nk

〉

= (εnk − εmk )
〈

mk

∣

∣

∂nk

∂kµ

〉

= −(εnk − εmk )
〈∂mk

∂kµ

∣

∣nk

〉

, (2.40)

for m 6= n. Utilizing Eqs. (2.39) and (2.40), Eq. (2.36) for σsxy can now be written as

σsxy =
~

4i

∫

dk

(2π)2

∑

εm<0<εn

〈∂mk

∂kx

∣

∣nk

〉〈

nk

∣

∣

∂mk

∂ky

〉

−
〈∂mk

∂ky

∣

∣nk

〉〈

nk

∣

∣

∂mk

∂kx

〉

. (2.41)

The identity
∑

εm
k
<0<εn

k
(|mk〉〈mk|+ |nk〉〈nk|) = 1, can be further used to simplify the

above expression to read

σs,mxy =
~

8π

1

2πi

∫

dk

(〈

∂mk

∂kx

∣

∣

∣

∣

∂mk

∂ky

〉

−
〈

∂mk

∂ky

∣

∣

∣

∣

∂mk

∂kx

〉)

(2.42)

where σs,mxy is a contribution to the spin Hall conductance from a completely filled

band m, well separated from the rest of the spectrum. Therefore the integral extends

over the entire magnetic Brillouin zone that is topologically a two-torus T 2. Let us

define a vector field Â in the magnetic Brillouin zone as

Â(k) = 〈mk|∇k|mk〉, (2.43)

where ∇k is a gradient operator in the k space. From (2.42) this contribution becomes

σs,mxy =
~

8π

1

2πi

∫

dk[∇k × Â(k)]z, (2.44)

where []z represents the third component of the vector. The topological aspects of

the quantity in (2.44) were extensively studied in the context of integer quantum Hall

effect (see e.g. [53]) and it is a well known fact that

1

2πi

∫

dk[∇k × Â(k)]z = C1 (2.45)
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where C1 is a first Chern number that is an integer. Therefore, a contribution of each

filled band to σsxy is

σs,mxy =
~

8π
N (2.46)

where N is an integer. The assumption that the band must be separated from the rest

of the spectrum can be relaxed. If two or more fully filled bands cross each other the

sum total of their contributions to spin Hall conductance is quantized even though

nothing guarantees the quantization of the individual contributions. The quantization

of the total spin Hall conductance requires a gap in the single particle spectrum at the

Fermi energy. As discussed in the Section 2.2.3, the general single particle spectrum

of the d-wave superconductor in the vortex state with inversion-symmetric vortex

lattice is gapped and therefore the quantization of σsxy is guaranteed.

2.3.2 Thermal Conductivity

Before discussing the nature of the quasi-particle spectrum, we will establish a

Wiedemann-Franz law between spin conductivity and thermal conductivity for a d-

wave superconductor. This relation is naturally expected to hold for a very general

system in which the quasi-particles form a degenerate assembly i.e. it holds even in

the presence of elastically scattering impurities.

Following Luttinger [48], and Smrčka and Středa [50] we introduce a pseudo-

gravitational potential χ = x · g/c2 into the Hamiltonian (2.7) where g is a constant

vector. The purpose is to include a coupling to the energy density on the Hamiltonian

level. This formal trick allows us to equate statistical (T∇(1/T )) and mechanical (g)

forces so that the thermal current jQ, in the long wavelength limit given by

jQ = LQ(T )

(

T∇ 1

T
−∇χ

)

, (2.47)

will vanish in equilibrium. Therefore it is enough to consider only the dynamical force

g to calculate the phenomenological coefficient LQµν . Note that thermal conductivity

κxy is

κµν(T ) =
1

T
LQµν(T ). (2.48)
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When the BCS Hamiltonian H introduced in Eq.(2.2) becomes perturbed by the

pseudo-gravitational field, the resulting Hamiltonian HT has the form

HT = H + F (2.49)

where F incorporates the interaction with the perturbing field:

F =
1

2

∫

dx Ψ†(x) (Ĥ0χ + χĤ0) Ψ(x). (2.50)

Since χ is a small perturbation, to the first order in χ the Hamiltonian HT can be

written as

HT =

∫

dx (1 +
χ

2
)Ψ†(x) Ĥ0 (1 +

χ

2
)Ψ(x) (2.51)

i.e. the application of the pseudo-gravitational field results in rescaling of the fermion

operators:

Ψ → Ψ̃ = (1 +
χ

2
)Ψ. (2.52)

If we measure the energy relative to the Fermi level, the transport of heat is

equivalent to the transport of energy. In analogy with the Section 2.3.1, we define

the heat current jQ through diffusion of the energy-density hT . From conservation of

the energy-density the continuity equation follows

ḣT + ∇ · jQ = 0. (2.53)

In the limit of q → 0 the thermal current is

jQµ =
i

2

(

Ψ̃†Vµ
˙̃Ψ − ˙̃Ψ†VµΨ̃

)

. (2.54)

For details see A.3. Note that the quantum statistical average of the current has two

contributions, both linear in χ,

〈jQµ 〉 = 〈jQ0µ〉 + 〈jQ1µ〉≡ − (KQ
µν +MQ

µν)∂νχ. (2.55)

The first term is the usual Kubo contribution to LQµν while the second term is related

to magnetization of the sample [54] for transverse components of κµν and vanishes

for the longitudinal components. In A.3 we show that at T = 0 the term related
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to magnetization cancels the Kubo term and therefore the transverse component of

κµν is zero at T = 0. To obtain finite temperature response, we perform Sommerfeld

expansion and derive Wiedemann-Franz law for spin and thermal Hall conductivity.

As shown in the A.3

LQµν(T ) = −
(

2

~

)2 ∫

dξ ξ2df(ξ)

dξ
σ̃sµν(ξ) (2.56)

where

σ̃sxy(ξ) =
~

2

4i

∑

εm<ξ<εn

V mn
x V nm

y − V mn
y V nm

x

(εm − εn)2
. (2.57)

Note that σ̃sµν(ξ = 0) = σsµν(T = 0). For a superconductor at low temperature the

derivative of the Fermi-Dirac distribution function is

−df(ξ)

dξ
= δ(ξ) +

π2

6
(kBT )2 d

2

dξ2
δ(ξ) + · · · (2.58)

Substituting (2.58) into (2.56) we obtain

LQµν(T ) =
4π2

3~2
(kBT )2σsµν , (2.59)

where σsµν is evaluated at T = 0. Finally, using (2.48), in the limit of T → 0

κµν(T ) =
4π2

3

(

kB
~

)2

Tσsµν. (2.60)

We recognize the Wiedemann-Franz law for the spin and thermal conductivity in the

above equation. As mentioned, this relation is quite general in that it is independent

of the spatial arrangement of the vortex array or elastic impurities. Thus, quantization

of the transverse spin conductivity σsxy implies quantization of κxy/T in the limit of

T → 0.

2.4 Discussion and Conclusion

In conclusion, we examined a general problem of 2D type-II superconductors in

the vortex state with inversion symmetric vortex lattice. The single particle exci-

tation spectrum is typically gapped and results in quantization of transverse spin
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conductivity σsxy in units of ~/8π [42]. The topological nature of this phenomenon is

discussed. The size of the magnetic field induced gap ∆m in unconventional d-wave

superconductors is not universal and in principle can be as large as several percent

of the maximum superconducting gap ∆0. By virtue of the Wiedemann-Franz law,

which we derive for the d-wave Bogoliubov-de Gennes equation in the vortex state,

the thermal conductivity κxy = 4π2

3

(

kB

~

)2

Tσsxy as T → 0. Thus at T � ∆m the

quantization of κxy/T will be observable in clean samples with negligible Lande g fac-

tor and with well ordered Abrikosov vortex lattice. In conventional superconductors,

the size of ∆m is given by Matricon-Caroli-deGennes vortex bound states ∼ ∆2/εF .

In real experimental situations, Lande g factor is not necessarily small. In fact it

is close to 2 in cuprates [55]. The Zeeman effect must therefore be included in the

analysis. Furthermore, the Zeeman splitting, wherein the magnetic field acts as a

chemical potential for the (spinful) quasiparticles, shifts the levels that are populated

below the gap by ±µspinB = ±g ~e
4mc

B or in the tight binding units by ±gπt
(

a0
l

)2
.

In the absence of any Zeeman effect the spectrum is gapped. Since this (mini)gap

∆m is associated with the curvature terms in the continuum BdG equation, it is

expected to scale as B. Since the Zeeman effect also scales as B the topological

quantization studied depends on the magnitude of the coefficients. While this coef-

ficient is known for the Zeeman effect (g ≈ 2), the exact form of ∆m is not known.

However, quite generally, we expect that ∆m increases with increasing the maximum

zero field gap ∆0. Therefore we could (at least theoretically) always arrange for the

quantization to persist despite the competition from the Zeeman splitting.

Detailed numerical examination of the quasiparticle spectra reveals that the spec-

trum remains gapped for some parameters even if g = 2. Thus, although the Zeeman

splitting is a competing effect, in some situations it is not enough to prevent the

quantization of σsxy and consequently of κxy/T .

We have explicitly evaluated the quantized values of σsxy on the tight-binding

lattice model of dx2−y2-wave BCS superconductor in the vortex state and showed that

in principle a wide range of integer values can be obtained. This should be contrasted

with the notion that the effect of a magnetic field on a d-wave superconductor is
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solely to generate a d+ id state for the order parameter, as in that case σsxy = ±2 in

units of ~/8π. In the presence of a vortex lattice, the situation appears to be more

complex.

By varying some external parameter, for instance the strength of the electron-

electron attraction which is proportional to ∆0 or the chemical potential µ, the gap

closing is achieved i.e. ∆m = 0. The transition between two different values of σsxy

occurs precisely when the gap closes and topological quanta are exchanged. The

remarkable new feature is the plateau dependence of σsxy on the ∆0 or µ. It is quali-

tatively different from the plateaus in the ordinary integer quantum Hall effect which

are essentially due to disorder. In superconductors, the plateaus happen in a clean

system because the gap in the quasiparticle spectrum is generated by the supercon-

ducting pairing interactions.
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Chapter 3

QED3 theory of the phase

disordered d-wave superconductors

3.1 Introduction

We will now turn our attention to the fluctuations around the broken symmetry

state. As is well known, the fluctuations of the superconducting order parameter,

a U(1) field, are crucial in describing the critical behavior below the upper critical

dimension du = 4, and destroy the long range order altogether at and below the

lower critical dimension dl = 2. This can be seen by assuming the ordered state

and computing the correlations between two fields separated by large distance. In

2 dimensions the correlations vanish algebraically at low temperatures due to the

presence of a soft phase mode, thereby destroying the (true) long range order. In 3

dimensions the long range order persist for a finite range of temperatures.

Generically, we would expect that when the measured superconducting coherence

length is long, then the mean-field description should be accurate. However, when

the coherence length is short, we expect the fluctuations to play a significant role. In

cuprate superconductors, the coherence length is very short ≈ 10Å, and moreover,

they are highly anisotropic layered materials, which suggests that there are strong

fluctuations of the order parameter.

The question we shall try to address in this chapter is what is the nature of the
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fermionic excitations in a fluctuating d-wave superconductor. Inspired by experiments

on the underdoped cuprates [8, 57], we shall assume that the long range order is

destroyed by phase fluctuations while the amplitude of the order parameter remains

finite. Such a state, without being a superconductor, would appear to have a d-wave-

like gap: a pseudogap. We shall not try to give a very detailed account of the origin of

the phase fluctuations, rather we shall simply assume, phenomenologically, presence

or absence of the long range order. The d-wave superconductor, with well defined

BCS quasiparticles, then serves as a point of departure.

We thus assume that the most important effect of strong correlations at the basic

microscopic level is to form a large pseudogap of d-wave symmetry, which is predom-

inantly pairing in origin, i.e. arises form the particle-particle (p-p) channel. We can

then study the renormalization group fate of various residual interactions among the

BCS quasiparticles, only to discover that short range interactions are irrelevant by

power counting and thus do not affect the d-wave pseudogap fixed point. Thus, if only

short range interactions are taken into account, the low energy BCS quasiparticles

remain well defined.

However, there are important additional interactions: BCS quasiparticles couple

to the collective modes of the pairing pseudogap, in particular they couple to the

(soft) phase mode. We analyze this coupling to show that while the fluctuations in the

longitudinal mode at T=0 are not sufficient to destroy the long lived low energy BCS

quasiparticles, the transverse fluctuations (vortices) do introduce a novel topological

frustration to quasiparticle propagation. We shall argue that this frustration can be

encoded by a low energy effective field theory which takes the form of (an anisotropic)

QED3 or quantum electrodynamics in 2+1 dimensions [58]. In its symmetric phase,

QED3 is governed by the interacting critical fixed point, with quasiparticles whose

lifetime decays algebraically with energy, leading to a non-Fermi liquid behavior for its

fermionic excitations. This “algebraic” Fermi liquid (AFL) [58] displaces conventional

Fermi liquid as the underlying theory of the pseudogap state.

The AFL (symmetric QED3) suffers an intrinsic instability when vortex-antivortex

fluctuations and residual interactions become too strong. The topological frustra-

tion is relieved by the spontaneous generation of mass for fermions, while the Berry
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gauge field remains massless. In the field theory literature on QED3 this instability

is known as the dynamical chiral symmetry breaking (CSB) and is a well-studied

and established phenomenon [59], although some uncertainty remains about its more

quantitative aspects [60]. In cuprates, the region of such strong vortex fluctuations

corresponds to heavily underdoped samples. When reinterpreted in electron coordi-

nates, the CSB leads to spontaneous creation of a whole plethora of nearly degenerate

ordered and gapped states from within the AFL. We shall discuss this in Section 3.6.

Notably, the manifold of CSB states contains an incommensurate antiferromagnetic

insulator (spin-density wave (SDW)). It is a manifestation of a remarkable richness

of the QED3 theory that both the “algebraic” Fermi liquid and the SDW and other

CSB insulating states arise from the one and the same starting point.

3.2 Vortex quasiparticle interaction

3.2.1 Protectorate of the pairing pseudogap

The starting point is the assumption that the pseudogap is predominantly particle-

particle or pairing (p-p) in origin and that it has a dx2−y2 symmetry. This assumption

is given mathematical expression in the partition function:

Z =

∫

DΨ†(r, τ)

∫

DΨ(r, τ)

∫

Dϕ(r, τ) exp [−S],

S =

∫

dτ

∫

d2r{Ψ†∂τΨ + Ψ†HΨ + (1/g)∆∗∆}, (3.1)

where τ is the imaginary time, r = (x, y), g is an effective coupling constant in the

dx2−y2 channel, and Ψ† = (ψ̄↑, ψ↓) are the standard Grassmann variables representing

coherent states of the Bogoliubov-de Gennes (BdG) fermions. The effective Hamil-

tonian H is given by:

H =

(

Ĥe ∆̂

∆̂∗ −Ĥ∗
e

)

+ Hres (3.2)
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with Ĥe = 1
2m

(p̂ − e
c
A)2 − εF , p̂ = −i∇ (we take ~ = 1), and ∆̂ the d-wave pairing

operator (see Eq. 2.6),

∆̂ =
1

k2
F

{p̂x, {p̂y,∆}} − i

4k2
F

∆
(

∂x∂yϕ
)

, (3.3)

where ∆(r, τ) = |∆| exp(iϕ(r, τ)) is the center-of-mass gap function and {a, b} ≡
(ab + ba)/2. As discussed in Chapter 2, the second term in Eq. (3.3) is necessary

to preserve the overall gauge invariance. Notice that we have rotated ∆̂ from dx2−y2

to dxy to simplify the continuum limit.
∫

Dϕ(r, τ) denotes the integral over smooth

(“spin wave”) and singular (vortex) phase fluctuations. Amplitude fluctuations of ∆̂

are suppressed at or just below T ∗ and the amplitude itself is frozen at 2∆ ∼ 3.56T ∗

for T � T ∗.

The fermion fields ψ↑ and ψ↓ appearing in Eqs. (3.1,3.2) do not necessarily refer

to the bare electrons. Rather, they represent some effective low-energy fermions

of the theory, already fully renormalized by high-energy interactions, expected to

be strong in cuprates due to Mott-Hubbard correlations near half-filling [61]. The

precise structure of such fermionic effective fields follows from a more microscopic

theory and is not of our immediate concern here – we are only relying on the absence

of true spin-charge separation which allows us to write the effective pairing term (3.2)

in the BCS-like form. The experimental evidence that supports this reasoning, at least

within the superconducting state and its immediate vicinity, is rather overwhelming

[8, 57, 62, 63]. Furthermore, Hres represents the “residual” interactions, i.e. the part

dominated by the effective interactions in the p-h channel. Our main assumption is

equivalent to stating that such interactions are in a certain sense “weak” and less

important part of the effective Hamiltonian H than the large pairing interactions

already incorporated through ∆̂. This notion of “weakness” of Hres will be defined

more precisely and with it the region of validity of our theory.

3.2.2 Topological frustration

The global U(1) gauge invariance mandates that the partition function (3.1) must

be independent of the overall choice of phase for ∆̂. We should therefore aim to elimi-
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nate the phase ϕ(r, τ) from the pairing term (3.2) in favor of ∂µϕ terms [µ = (x, y, τ)]

in the fermionic action. For the regular (“spin-wave”) piece of ϕ this is easily ac-

complished by absorbing a phase factor exp(i 1
2
ϕ) into both spin-up and spin-down

fermionic fields. This amounts to “screening” the phase of ∆(r, τ) (“XY phase”) by a

“half-phase” field (“half-XY phase”) attached to ψ↑ and ψ↓. However, as discussed in

the Chapter 2, when dealing with the singular part of ϕ, such transformation “screens”

physical singly quantized hc/2e superconducting vortices with “half-vortices” in the

fermionic fields. Consequently, this “half-angle” gauge transformation must be ac-

companied by branch cuts in the fermionic fields which originate and terminate at

vortex positions and across which the quasiparticle wavefunction must switch its sign.

These branch cuts are mathematical manifestation of a fundamental physical effect:

in presence of hc/2e vortices the motion of quasiparticles is topologically frustrated

since the natural elementary flux associated with the quasiparticles is hc/e i.e. twice

as large . The physics of this topological frustration is at the origin of all non-trivial

dynamics discussed in this work.

Dealing with branch cuts in a fluctuating vortex problem is very difficult due to

their non-local character and defeats the original purpose of reducing the problem

to that of fermions interacting with local fluctuating superflow field, i.e. with ∂µϕ.

Instead, in order to avoid the branch cuts, non-locality and non-single valued wave-

functions, we employ the singular gauge transformation introduced in the Chapter 2,

hereafter referred to as ‘FT’ transformation:

ψ̄↑ → exp (−iϕA)ψ̄↑, ψ̄↓ → exp (−iϕB)ψ̄↓, (3.4)

where ϕA +ϕB = ϕ. Here ϕA(B) is the singular part of the phase due to A(B) vortex

defects:

∇×∇ϕA(B) = 2πẑ
∑

i

qiδ
(

r − r
A(B)
i (τ)

)

, (3.5)

with qi = ±1 denoting the topological charge of i-th vortex and r
A(B)
i (τ) its position.

The labels A and B represent some convenient but otherwise arbitrary division of vor-

tex defects (loops or lines in ϕ(r, τ)) into two sets. The transformation (3.4) “screens”

the original superconducting phase ϕ (or “XY phase”) with two ordinary “XY phases”

40



ϕA and ϕB attached to fermions. Both ϕA and ϕB are simply phase configurations of

∆(r, τ) but with fewer vortex defects. The key feature of the transformation (3.4) is

that it accomplishes “screening” of the physical hc/2e vortices without introducing

any branch cuts into the wavefunctions. The topological frustration still remains, but

now it is expressed through local fields. The resulting fermionic part of the action is

then:

L′ = ψ̄↑[∂τ + i(∂τϕA)]ψ↑ + ψ̄↓[∂τ + i(∂τϕB)]ψ↓ + Ψ†H′Ψ, (3.6)

where the transformed Hamiltonian H′ is:

(

1
2m

(π̂ + v)2 − εF D̂

D̂ − 1
2m

(π̂ − v)2 + εF

)

,

with D̂ = (∆0/2k
2
F )(π̂xπ̂y + π̂yπ̂x) and π̂ = p̂ + a.

The singular gauge transformation (3.4) generates a “Berry” gauge potential

aµ =
1

2
(∂µϕA − ∂µϕB) , (3.7)

which describes half-flux Aharonov-Bohm scattering of quasiparticles on vortices.

aµ couples to BdG fermions minimally and mimics the effect of branch cuts in

quasiparticle-vortex dynamics. Closed fermion loops in the Feynman path-integral

representation of (3.1) acquire the (−1) phase factors due to this half-flux Aharonov-

Bohm effect just as they would from a branch cut attached to a vortex defect.

The above (±1) prefactors of the BdG fermion loops come on top of general and

ever-present U(1) phase factors exp(iδ), where the phase δ depends on spacetime

configuration of vortices. These U(1) phase factors are supplied by the “Doppler”

gauge field

vµ =
1

2
(∂µϕA + ∂µϕB) ≡ 1

2
∂µϕ , (3.8)

which denotes the classical part of the quasiparticle-vortex interaction. The coupling

of vµ to fermions is the same as that of the usual electromagnetic gauge field Aµ

and is therefore non-minimal, due to the pairing term in the original Hamiltonian H
(3.2). It is this non-minimal interaction with vµ, which we call the Meissner coupling,

that is responsible for the U(1) phase factors exp(iδ). These U(1) phase factors are

41



“random”, in the sense that they are not topological in nature – their values depend

on detailed distribution of superfluid fields of all vortices and “spin-waves” as well as

on the internal structure of BdG fermion loops, i.e. what is the sequence of spin-up

and spin-down portions along such loops. In this respect, while its minimal coupling

to BdG fermions means that, within the lattice d-wave superconductor model, one

is naturally tempted to represent the Berry gauge field aµ as a compact U(1) gauge

field, the Doppler gauge field vµ is decidedly non-compact, lattice or no lattice [64]. aµ

and vµ as defined by Eqs. (3.7,3.8) are not independent since the discrete spacetime

configurations of vortex defects {ri(τ)} serve as sources for both.

All choices of the sets A and B in transformation (3.4) are completely equivalent

– different choices represent different singular gauges and vµ, and therefore exp(iδ),

are invariant under such transformations. aµ, on the other hand, changes but only

through the introduction of (±) unit Aharonov-Bohm fluxes at locations of those

vortex defects involved in the transformation. Consequently, the Z2 style (±1) phase

factors associated with aµ that multiply the fermion loops remain unchanged. In order

to symmetrize the partition function with respect to this singular gauge, we define a

generalized transformation (3.4) as the sum over all possible choices of A and B, i.e.,

over the entire family of singular gauge transformations. This is an Ising sum with 2Nl

members, where Nl is the total number of vortex defects in ϕ(r, τ), and is itself yet

another choice of the singular gauge. The many benefits of such symmetrized gauge

will be discussed shortly but we stress here that its ultimate function is calculational

convenience. What actually matters for the physics is that the original ϕ be split

into two XY phases so that the vortex defects of every distinct topological class are

apportioned equally between ϕA and ϕB (3.4) [58].

The above symmetrization leads to the new partition function: Z → Z̃:

Z̃ =

∫

DΨ̃†
∫

DΨ̃

∫

Dvµ
∫

Daµ exp [−
∫ β

0

dτ

∫

d2rL̃] , (3.9)

in which the half-flux-to-minus-half-flux (Z2) symmetry of the singular gauge trans-

formation (3.4) is now manifest:

L̃ = Ψ̃†[(∂τ + iaτ )σ0 + ivτσ3]Ψ̃ + Ψ̃†H′Ψ̃ + L0[vµ, aµ], (3.10)
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where L0 is the “Jacobian” of the transformation given by

e−
� β
0 dτ

�
d2rL0 = 2−Nl

∑

A,B

∫

Dϕ(r, τ) (3.11)

×δ[vµ − 1
2
(∂µϕA + ∂µϕB)]δ[aµ − 1

2
(∂µϕA − ∂µϕB)].

Here σµ are the Pauli matrices, β = 1/T , H′ is given in Eq. (3.6) and, for later conve-

nience, L0 will also include the energetics of vortex core overlap driven by amplitude

fluctuations and thus independent of long range superflow (and of A). We call the

transformed quasiparticles Ψ̃† = (
¯̃
ψ↑, ψ̃↓) appearing in (3.10) “topological fermions”

(TF). TF are the natural fermionic excitations of the pseudogapped normal state.

They are electrically neutral and are related to the original quasiparticles by the

inversion of transformation (3.4).

By recasting the original problem in terms of topological fermions we have ac-

complished our original goal: the interactions between quasiparticles and vortices are

now described solely in terms of two local superflow fields [58]:

vAµ = ∂µϕA ; vBµ = ∂µϕB , (3.12)

which we can think of as superfluid velocities associated with the phase configurations

ϕA(B)(r, τ) of a (2+1)-dimensional XY model with periodic boundary conditions along

the τ -axis. Our Doppler and Berry gauge fields vµ and aµ are linear combinations

of vAµ and vBµ. Note that aµ is produced exclusively by vortex defects since the

“spin-wave” configurations of ϕ can be fully absorbed into vµ. All that remains is to

perform the sum in (3.9) over all the “spin-wave” fluctuations and all the spacetime

configurations of vortex defects {ri(τ)} of this (2+1)-dimensional XY model.

3.2.3 “Coarse-grained” Doppler and Berry U(1) gauge fields

The exact integration over the phase ϕ(r, τ) is prohibitively difficult. To proceed

by analytic means we devise an approximate procedure to integrate over vortex-

antivortex positions {ri(τ)} in (3.9) which will capture qualitative features of the

long-distance, low-energy physics of the original problem. A hint of how to devise

such an approximation comes from examining the role of the Doppler gauge field vµ
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in the physics of this problem. For simplicity, we consider the finite T case where

we can ignore the τ -dependence of ϕ(r, τ). The results are easily generalized, with

appropriate modifications, to include quantum fluctuations.

We start by noting that Vs = 2v − (2e/c)A is just the physical superfluid ve-

locity [65], invariant under both A ↔ B singular gauge transformations (3.4) and

ordinary electromagnetic U(1) gauge symmetry. The superfluid velocity (Doppler)

field, swirling around each (anti)vortex defect, is responsible for the vast majority of

phenomena that are associated with vortices: long range interactions between vortex

defects, coupling to external magnetic field and the Abrikosov lattice of the mixed

state, Kosterlitz-Thouless transition, etc. Remarkably, its role is essential even for

the physics discussed here, although it now occupies a supporting role relative to

the Berry gauge field aµ. Note that if a (aµ) were absent – then, upon integra-

tion over topological fermions in (3.10), we obtain the following term in the effective

Lagrangian:

M2

(

∇ϕ− 2e

c
A

)2

+ (· · · ) , (3.13)

where (· · · ) denotes higher order powers and derivatives of 2∇ϕ − (2e/c)A. In the

above we have replaced v → (1/2)∇ϕ to emphasize that the leading term, with

the coefficient M 2 proportional to the bare superfluid density, is just the standard

superfluid-velocity-squared term of the continuum XY model – the notation M 2 for

the coefficient will become clear in a moment. We can now write ∇ϕ = ∇ϕvortex +

∇ϕspin−wave and re-express the transverse portion of (3.13) in terms of (anti)vortex

positions {ri} to obtain a familiar form:

→ M2

2π

∑

〈i,j〉
ln |ri − rj| (3.14)

or, by using ∇ · ∇ϕvortex = 0 and ∇×∇ϕvortex = 2πρ(r), equivalently as:

→ M2

2π

∫

d2r

∫

d2r′ρ(r)ρ(r′) ln |r− r′| , (3.15)

where ρ(r) = 2π
∑

i qiδ(r− ri) is the vortex density.

The Meissner coupling of v to fermions is very strong – it leads to familiar long

range interactions between vortices which constrain vortex fluctuations to a remark-

able degree. To make this statement mathematically explicit we introduce the Fourier
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transform of the vortex density ρ(q) =
∑

i exp(iq · ri) and observe that its variance

satisfies:

〈ρ(q)ρ(−q)〉 ∝ q2/M2 . (3.16)

Vortex defects form an incompressible liquid – the long distance vorticity fluctuations

are strongly suppressed. This “incompressibility constraint” is naturally enforced in

(3.9) by replacing the integral over discrete vortex positions {ri} with the integral

over continuously distributed field ρ̄(r) with 〈ρ̄(r)〉 = 0. The Kosterlitz-Thouless

transition and other vortex phenomenology are still maintained in the non-trivial

structure of L0[ρ̄(r)]. But the long wavelength form of (3.13) now reads:

M2

(

2v̄ − 2e

c
A

)2

+ (· · · ) , (3.17)

and can be interpreted as a massive action for a U(1) gauge field v̄. The latter is the

coarse grained Doppler gauge field defined by

∇× v̄(r) = πρ̄(r) . (3.18)

The coarse-graining procedure has made v into a massive U(1) gauge field v̄ whose

influence on TF disappears in the long wavelength limit. We can therefore drop it

from low energy fermiology.

The full problem also contains the Berry gauge field a (aµ) which now must be

restored. However, having replaced the Doppler field v (defined by discrete vortex

sources) with the distributed quantity (3.18), we cannot simply continue to keep a (aµ)

specified by half-flux Dirac (Aharonov-Bohm) strings located at discrete vortex posi-

tions {ri}. Instead, a (aµ) must be replaced by a new gauge field which reflects the

“coarse-graining” that has been applied to v – simply put, the Z2-valued Berry gauge

field (3.7) of the original problem (3.10) must be “dressed” in such a way as to best

compensate for the error introduced by “coarse-graining” v.

Note that if we insist on replacing v by its “coarse-grained” form (3.18), the only

way to achieve this is to “coarse-grain” both vA and vB in the same manner:

∇× vA → 2πρA ; ∇× vB → 2πρB , (3.19)
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where ρA,B(r) are now continuously distributed densities of A(B) vortex defects (the

reader should contrast this with (3.7,3.8)). This is because the elementary vortex

variables of our problem are not the sources of v and a; rather, they are the sources

of vA and vB. We cannot separately fluctuate or “coarse-grain” the Doppler and

the Berry “halves” of a given vortex defect – they are permanently confined into a

physical (hc/2e) vortex. On the other hand, we can independently fluctuate A and B

vortices – this is why it was important to use the singular gauge (3.4) to rewrite the

original problem solely in terms of A and B vortices and associated superflow fields

(3.12).

We can now reassemble the coarse-grained Doppler and Berry gauge fields as:

v =
1

2
(vA + vB) ; a =

1

2
(vA − vB) , (3.20)

with the straightforward generalization to (2+1)D:

v =
1

2
(vA + vB) ; a =

1

2
(vA − vB) . (3.21)

The coupling of vA(vA) and vB(vB) to fermions is a hybrid of Meissner and minimal

coupling [64]. They contribute a product of U(1) phase factors exp(iδA) × exp(iδB)

to the BdG fermion loops with both exp(iδA) and exp(iδB) being “random” in the

sense of previous subsection. Upon coarse-graining vA(vA) and vB(vB) turn into

non-compact U(1) gauge fields and therefore v(v) and a(a) must as well.

3.2.4 Further remarks on FT gauge

The above “coarse-grained” theory must have the following symmetry: it has to

be invariant under the exchange of spin-up and spin-down labels, ψ↑ ↔ ψ↓, without

any changes in v (v). This symmetry insures that (an arbitrarily preselected) Sz

component of the spin, which is the same for TF and real electrons, decouples from

the physical superfluid velocity which naturally must couple only to charge. When

dealing with discrete vortex defects this symmetry is guaranteed by the singular gauge

symmetry defined by the family of transformations (3.4). However, if we replace vA

and vB by their distributed “coarse-grained” versions, the said symmetry is preserved
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only in the FT gauge. This is seen by considering the effective Lagrangian expressed

in terms of coarse-grained quantities:

L → Ψ̃†∂τ Ψ̃ + Ψ̃†H′Ψ̃ + L0[ρA, ρB] , (3.22)

where H′ is given by (3.6), vA, vB are connected to ρA, ρB via (3.19), and L0 is

independent of τ .

The problem lurks in L0[ρA, ρB] – this is just the entropy functional of fluctuating

free A(B) vortex-antivortex defects and has the following symmetry: ρA(B) → −ρA(B)

with ρB(A) kept unchanged. This symmetry reflects the fact that the entropic “inter-

actions” do not depend on vorticity. Above the Kosterlitz-Thouless transition we can

expand:

L0 →
KA

4
(∇× vA)2 +

KB

4
(∇× vB)2 + (· · · ), (3.23)

where the ellipsis denote higher order terms and the coefficients K−1
A(B) → n

A(B)
l (see

Appendix B.1 for details).

The above discussed symmetry of Hamiltonian H′ (3.6) demands that v and a

(3.20,3.21) be the natural choice for independent distributed vortex fluctuation gauge

fields which should appear in our ultimate effective theory. L0, however, collides with

this symmetry of H′ – if we replace vA(B) → v ± a in (3.23), we realize that v and a

are coupled through L0 in the general case KA 6= KB:

L0 → KA +KB

4

(

(∇× v)2 + (∇× a)2
)

+
KA −KB

2
(∇× a) · (∇× v) . (3.24)

Therefore, via its coupling to a, the superfluid velocity v couples to the “spin” of

topological fermions and ultimately to the true spin of the real electrons. This is

an unacceptable feature for the effective theory and seriously handicaps the general

“A − B” gauge, in which the original phase is split into ϕ → ϕA + ϕB, with ϕA(B)

each containing some arbitrary fraction of the original vortex defects. In contrast, the

symmetrized transformation (3.4) which apportions vortex defects equally between ϕA

and ϕB [58] leads to KA = KB and to decoupling of v and a at quadratic order, thus

eliminating the problem at its root. Furthermore, even if we start with the general
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“A − B” gauge, the renormalization of L0 arising from integration over fermions

will ultimately drive KA − KB → 0 and make the coupling of v and a irrelevant in

the RG sense [67]. This argument is actually quite rigorous in the case of quantum

fluctuations where the symmetrized gauge (3.4) represents a fixed point in the RG

analysis [58]. Consequently, it appears that the symmetrized singular transformation

(3.4) employed in (3.10) is the preferred gauge for the construction of the effective

low-energy theory. In this respect, while all the singular A − B gauges are created

equal some are ultimately more equal than others.

The above discussion provides the rationale behind using the FT transformation in

our quest for the effective theory. At low energies, the interactions between quasipar-

ticles and vortices are represented by two U(1) gauge fields v and a (3.20,3.21). The

conversion of a from a Z2-valued to a non-compact U(1) field with Maxwellian action

is effected by the confinement of the Doppler to the Berry half of a singly quantized

vortex – in the coarse-graining process the phase factors exp(iδ) of the non-compact

Doppler part “contaminate” the original (±1) factors supplied by a (3.7). This con-

tamination diminishes as doping x → 0 since then vF/v∆ → 0 and “vortices” are

effectively liberated of their Doppler content. In this limit, the pure Z2 nature of a

is recovered and one enters the realm of the Z2 gauge theory of Senthil and Fisher

[68]. In contrast, in the pairing pseudogap regime of this paper where vF/v∆ > 1

and singly quantized (hc/2e) vortices appear to be the relevant excitations [69], we

expect the effective theory to take the U(1) form described by v and a (3.20,3.21).

3.2.5 Maxwellian form of the Jacobian L0[vµ, aµ]

We shall now derive an expression for the long distance, low energy form of the

“Jacobian” L0[vµ, aµ] (see Eqn. 3.11) which serves as the “bare action” for the gauge

fields vµ and aµ of our effective theory. As shown below, this form is a non-compact

Maxwellian whose stiffness K (or inverse “charge” 1/e2 = K) stands in intimate

relation to the helicity modulus tensor of a dSC and, in the pseudogap regime of

strong superconducting fluctuations, can be expressed in terms of a finite physical

superconducting correlation length ξsc, K ∝ ξ2
sc (2D); K ∝ ξsc ((2+1)D). Upon
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entering the superconducting phase and ξsc → ∞, K → ∞ as well (or e2 → 0),

implying that vµ and aµ have become massive. The straightforward relationship

between the massless (or massive) character of L0[vµ, aµ] and the superconducting

phase disorder (or order) is a consequence of rather general physical and symmetry

principles.

For the sake of simplicity, but without loss of generality, we consider first an

example of an s-wave superconductor with a large gap ∆ extending over all of the

Fermi surface. The action takes the form similar to (3.10):

L̃ = Ψ̃†[(∂τ + iaτ )σ0 + ivτσ3]Ψ̃ + Ψ̃†H′
sΨ̃ + L0[vµ, aµ], (3.25)

but with H′
s defined as:

(

1
2m

(π̂ + v)2 − εF ∆

∆ − 1
2m

(π̂ − v)2 + εF

)

, (3.26)

with π̂ = p̂ + a. When the the electromagnetic field is included, vµ in the fermionic

part action is substituted by vµ − (e/c)Aµ, while there is no substitution in L0.

Thermal vortex-antivortex fluctuations

In the language of BdG fermions the system (3.25) is a large gap “semiconductor”

and the Berry gauge field couples to it minimally through “BdG” vector and scalar

potentials a and aτ . Such BdG semiconductor is a poor dielectric diamagnet with

respect to aµ. We proceed to ignore its “diamagnetic susceptibility” and also set aτ =

0 to concentrate on thermal fluctuations. The Berry gauge field part of the coupling

between quasiparticles and vortices in a large gap s-wave superconductor influences

the vortices only through weak short-range interactions which are unimportant in

the region of strong vortex fluctuations near Kosterlitz-Thouless transition. We can

therefore drop a from the fermionic part of the action and integrate over it to obtain

L0 in terms of physical vorticity ρ(r) = (∇ × v)/π. Additional integration over the

fermions produces the effective free energy functional for vortices:

F [ρ] = M2(2v − 2e

c
Aext)2 + (· · · ) + L0[ρ] , (3.27)
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where we have used our earlier notation and have introduced a small external trans-

verse vector potential Aext. The ellipsis denotes higher order contributions to vortex

interactions. As discussed earlier in this Section, the familiar long range interactions

between vortices lead directly to the standard Coulomb gas representation of the

vortex-antivortex fluctuation problem and Kosterlitz-Thouless transition.

The presence of these long range interactions implies that the vortex system is

incompressible (3.16) and long distance vortex density fluctuations are suppressed.

When studying the coupling of BdG quasiparticles to these fluctuations it therefore

suffices to expand the “entropic” part:

L0[ρ] ∼=
1

2
π2Kδρ2 + · · · = 1

2
K(∇× v)2 + . . . . (3.28)

The above expansion is justified above Tc since we know that at T � Tc we must

match the purely entropic form of a non-interacting particle system, L0 ∝ δρ2 (see

Appendix B.1).

To uncover the physical meaning of the coefficient K we expand the free energy

F of the vortex system to second order in Aext. In the pseudogap state the gauge

invariance demands that F depends only on ∇× Aext:

F [∇× Aext] = F [0] +
(2e)2

2c2
χ

∫

d2r(∇× Aext)2 + . . . (3.29)

Note that ((2e)2/c2)χ is just the diamagnetic susceptibility in the pseudogap state.

χ determines the long wavelength form of the helicity modulus tensor Υµν(q) defined

as:

Υµν(q) = Ω
δ2F

δAext
µ (q)δAext

ν (−q)
∣

∣

Aext
µ →0

. (3.30)

The above is the more general form of Υµν(q) applicable to uniaxially symmetric 3D

and (2+1)D XY or Ginzburg-Landau models; in 2D only Υxy(q) appears. In the long

wavelength limit Υµν(q) vanishes as q2χ:

c2

(2e)2
Υµν(q) = χεραµερβνqαqβ + . . . , (3.31)

for the isotropic case, while for the anisotropic situation χ⊥ 6= χ‖:

c2

(2e)2
Υµν(q) = (χ‖ − χ⊥)εzαµεzβνqαqβ + χ⊥εραµερβνqαqβ . (3.32)
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εαβγ is the Levi-Civita symbol, summation over repeated indices is understood and

index z of the anisotropic 3D GL or XY model is replaced by τ for the (2+1)D case.

(2e)2/c2 is factored out for later convenience.

Let us compute the helicity modulus of the problem explicitly. This is done by

absorbing the small transverse vector potential Aext into v in (3.25,3.6) and inte-

grating over the new variable v − (e/c)Aext. The hecility modulus tensor measures

the screening properties of the vortex system. In a superconductor, with topological

defects bound in vortex-antivortex dipoles, there is no screening at long distances.

This translates into Meissner effect for Aext. When the dipoles unbind and some free

vortex-antivortex excitations appear the screening is now possible over all lengthscales

and there is no Meissner effect for Aext. The information on presence or absence of

such screening is actually stored entirely in L0, where Aext re-emerges after the above

change of variables. We finally obtain:

4χ = K − K2π2

T
lim

|q|→0+

∫

d2reiq·r〈δρ(r)δρ(0)〉 , (3.33)

where the thermal average 〈· · · 〉 is over the free energy (3.27) with Aext = 0 or,

equivalently, (3.25). In the normal phase only the first term contributes in the long

wavelength limit, the second being down by an extra power of q2 courtesy of long

range vortex interactions. Consequently, K = 4χ (the factor of 4 is due to the fact

that the true superfluid velocity is 2v [65]).

We see that in the pseudogap phase, with free vortex defects available to screen,

L0[v] takes on a massless Maxwellian form, the stiffness of which is given by the

diamagnetic susceptibility of a strongly fluctuating superconductor. In the fluctuation

region χ is given by the superconducting correlation length ξsc [70]:

K = 4χ = 4C2Tξ
2
sc , (3.34)

where C2 is a numerical constant, intrinsic to a 2D GL, XY or some other model of

superconducting fluctuations.

As we approach Tc, ξsc → ∞ and the stiffness of Maxwellian term (3.28) diverges.

This can be interpreted as the Doppler gauge field becoming massive. Indeed, im-

mediately bellow the Kosterlitz-Thouless transition at Tc, L0
∼= m2

vv
2 + . . . , where
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mv � M and mv → 0 as T → T−
c . This is just a reflection of the helicity modulus

tensor now becoming finite in the long wavelength limit,

Υxy →
4e2

c2
m2
vM

2

4M2 +m2
v

.

Topological defects are now bound in vortex-antivortex pairs and cannot screen re-

sulting in the Meissner effect for Aext. The system is a superconductor and v had

become massive.

Returning to a d-wave superconductor, we can retrace the steps in the above

analysis but we must replace H′
s in (3.25) with H′ (3.6). Now, instead of a large gap

BdG “semiconductor”, we are dealing with a narrow gap “semiconductor” or BdG

“semimetal” because of the low energy nodal quasiparticles. This means that we

must restore the Berry gauge field a to the fermionic action since the contribution

from nodal quasiparticles makes its BdG “diamagnetic susceptibility” very large,

χBdG ∼ 1/T � 1/T ∗ (see the next Section). The long distance fluctuations of v

and a are now both strongly suppressed, the former through incompressibility of the

vortex system and the latter through χBdG. This allows us to expand (3.23):

L0
∼= KA

4
(∇× vA)2 +

KB

4
(∇× vB)2 + (· · · ) , (3.35)

where KA = KB = K is mandated by the FT singular gauge. Since in our gauge the

fermion spin and charge channels decouple Aext still couples only to v and the above

arguments connecting K to the helicity modulus and diamagnetic susceptibility χ

follow through. This finally gives the Maxwellian form of Ref. [58]:

L0 →
K

2
(∇× v)2 +

K

2
(∇× a)2 , (3.36)

where K is still given by Eq. (3.34). Note however that ξsc of a d-wave and of an

s-wave superconductor are two rather different functions of T , x and other parameters

of the problem, due to strong Berry gauge field renormalizations of vortex interactions

in the d-wave case. Nonetheless, as T → Tc, the Kosterlitz-Thouless critical behavior

remains unaffected since χBdG, while large, is still finite at all finite T .

To summarize, we have shown that L0[ρA, ρB] = L0[v, a] in the pseudogap state

takes on the massless Maxwellian form (3.36), with the stiffness K set by the true
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superconducting correlation length ξsc (3.34). This result holds as a general feature of

our theory irrespective of whether one employs a Ginzburg-Landau theory, XY model,

vortex-antivortex Coulomb plasma, or any other description of strongly fluctuating

dSC, as long as such description properly takes into account vortex-antivortex fluctu-

ations and reproduces Kosterlitz-Thouless phenomenology. In the Appendix B.1 we

show that within the continuum vortex-antivortex Coulomb plasma model:

L0 →
T

2π2nl

[

(∇× v)2 + (∇× a)2
]

, (3.37)

where nl is the average density of free vortex and antivortex defects. Comparison

with (3.36) allows us to identify ξ−2
sc ↔ 4π2C2nl [58].

Quantum fluctuations of (2+1)D vortex loops

The above results can be generalized to quantum fluctuations of spacetime vortex

loops. The superflow fields vA(B)µ satisfy (∂×vA(B))µ = 2πjA(B)µ, where jA(B)µ(x) are

the coarse-grained vorticities associated with A(B) vortex defects and 〈jA(B)µ〉 = 0.

The topology of vortex loops dictates that jA(B)µ(x) be a purely transverse field, i.e.

∂ · jA(B) = 0, reflecting the fact that loops have no starting nor ending point. Again,

we begin with a large gap s-wave superconductor and use its poor BdG diamag-

netic/dielectric nature to justify dropping the Berry gauge field aµ from the fermionic

part of (3.25) and integrating over aµ in the “entropic” part containing L0[vµ, aµ].

The integration over the fermions contains an important novelty specific to the

(2+1)D case: the appearance of the Berry phase terms for quantum vortices as they

wind around fermions. Such Berry phase is the consequence of the first order time

derivative in the original fermionic action (3.1). If we think of spacetime vortex loops

as worldlines of some relativistic quantum bosons dual to the Cooper pair field ∆(r, τ),

as we do in the Appendix B.1, then these bosons see Cooper pairs and quasiparticles

as sources of “magnetic” flux [71]. At the mean field level, this translates into a dual

“Abrikosov lattice” or a Wigner crystal of holes in a dual superfluid. Accordingly,

the non-superconducting ground state in the pseudogap regime will likely contain a

weak charge modulation. We will ignore it for the rest of this paper. This is justified

by the fact that aµ does not couple to charge directly.
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Hereafter, we assume that the transition from a dSC into a pseudogap phase

proceeds via unbinding of vortex loops of a (2+1)D XY model or its GL counterpart

or, equivalently, an anisotropic 3D XY or GL model where the role of imaginary time

is taken on by a third spatial axis z [72]. We can now integrate out the fermions to

obtain the effective Lagrangian for coarse-grained spacetime loops (πjµ = (∂ × v)µ):

L[jµ] = M2
µ(2vµ −

2e

c
Aext
µ )2 + (· · · ) + L0[jµ] , (3.38)

where Mx = My = M and Mτ = M/cs, with cs ∼ vF being the effective “speed of

light” in the vortex loop spacetime. The incompressibility condition reads 〈jµ(q)jν(−q)〉 ∼
q2[δµν − (qµqν/q

2)] and in the pseudogap state permits the expansion:

L0[jµ] ∼=
1

2
π2Kτ j

2
τ +

1

2
π2
∑

i=x,y

Kij
2
i , (3.39)

where Kx = Ky = K 6= Kτ . Using the analogy with the uniaxially symmetric

anisotropic 3D XY (or GL) model we can expand the ground state energy in the

manner of (3.29):

E[∂ × Aext] = E[0] +
(2e)2

2c2

∑

⊥,‖
χ⊥,‖

∫

d3x(∂ × Aext)2
⊥,‖ , (3.40)

with χ⊥ = χx = χy = χ and χ‖ = χτ 6= χ. The form of L0 (3.39) follows directly

from the requirement that there are infinitely large vortex loops, resulting in vorticity

fluctuations over all distances. χ and χτ determine the diamagnetic and dielectric

susceptibilities of this insulating pseudogap state.

The explicit computation of Υµν(q) (3.30,3.32) leads to:

4χi,τ = Ki,τ −K2
i,τπ

2 lim
q→0+

∫

d3xeiq·x〈j(x)i,τ j(0)i,τ〉 , (3.41)

where the second term is again eliminated by the incompressibility of the vortex

system. This results in:

K = 4χ = 4C3ξτ ; Kτ = 4χτ = 4C3
ξ2
sc

ξτ
, (3.42)

where we used the result for the anisotropic 3D XY or GL models: χ⊥ = C3Tξ‖,

χ‖ = C3Tξ
2
⊥/ξ‖, C3 being the intrinsic numerical constant for those models (C3 6= C2).
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In the case of (2+1)D vortex loops ξτ ∝ ξsc since our adopted model has the dynamical

critical exponent z = 1.

The application to a d-wave superconductor is straightforward: the nodal struc-

ture of BdG quasiparticles in dSC helps along by the way of providing the anomalous

stiffness for the Berry gauge field aµ – upon integration over the nodal fermions the

following term emerges in the effective action:

1

2
χBdG(q)(q2δµν − qµqν)aµ(q)aν(−q) ∼ |q|[δµν − (qµqν/q

2)]aµ(q)aν(−q). (3.43)

In the terminology of the BdG “semimetal”, the “susceptibility” χBdG is not merely

very large, it diverges: χBdG ∼ 1/q, as q → 0. This allows us to expand L0[jAµ, jBµ]

and retain only quadratic terms:

L0
∼= KAµ

4
(∂ × vA)2

µ +
KBµ

4
(∂ × vB)2

µ + (· · · ) , (3.44)

where KAµ = KBµ = Kµ is again assured by our choice of the FT singular gauge

(3.4,3.11).

Finally, we rewrite (3.44) in terms of vµ, aµ = (1/2)(vAµ ± vBµ):

L0 →
Kµ

2
(∂ × v)2

µ +
Kµ

2
(∂ × a)2

µ , (3.45)

and observe that the fact that Aext
µ couples only to vµ means that the expression

(3.42) for Kµ is still valid. Of course, ξsc(x, T ) is now truly different from its s-wave

counterpart, including a possible difference in the critical exponent, since the coupling

of d-wave quasiparticles to the Berry gauge field is marginal at the RG engineering

level and may change the quantum critical behavior of the superconductor-pseudogap

(insulator) transition.

3.3 Low energy effective theory

As indicated in Fig. 3.1, the low energy quasiparticles are located at the four

nodal points of the dxy gap function: k1,1̄ = (±kF , 0) and k2,2̄ = (0,±kF ), hereafter

denoted as (1, 1̄) and (2, 2̄) respectively. To focus on the leading low energy behavior
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1 2

2 1

Figure 3.1: Schematic representation of the Fermi surface of the cuprate supercon-
ductors with the indicated nodal points of the dx2−y2 gap.

of the fermionic excitations near the nodes we follow the standard procedure [73] and

linearize the Lagrangian (3.10). To this end we write our TF spinor Ψ̃ as a sum of 4

nodal fermi fields,

Ψ̃ = eik1·rΨ̃1 + eik1̄·rσ2Ψ̃1̄ + eik2·rΨ̃2 + eik2̄·rσ2Ψ̃2̄. (3.46)

The σ2 matrices have been inserted here for convenience: they insure that we eventu-

ally recover the conventional form of the QED3 Lagrangian. (Without the σ2 matrices

the Dirac velocities at 1̄, 2̄ nodes would have been negative.) Inserting Ψ̃ into (3.10)

and systematically neglecting the higher order derivatives [73], we obtain the nodal

Lagrangian of the form

LD =
∑

l=1,1̄

Ψ̃†
l [Dτ + ivFDxσ3 + iv∆Dyσ1]Ψ̃l (3.47)

+
∑

l=2,2̄

Ψ̃†
l [Dτ + ivFDyσ3 + iv∆Dxσ1]Ψ̃l + L0[aµ],

where Dµ = ∂µ + iaµ denotes the covariant derivative and L0[aµ] is given by (3.45):

L0[aµ] =
1

2
Kµ(∂ × a)2

µ ≡ 1

2e2µ
(∂ × a)2

µ . (3.48)
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vF = ∂εk/∂k denotes the Fermi velocity at the node and v∆ = ∂∆k/∂k denotes the

gap velocity. Note that vF and v∆ already contain renormalizations coming from high

energy interactions and are effective material parameters of our theory. Similarly,

Kµ = 1/e2
µ, derived in the previous Section in terms of ξsc(x, T ), are treated as

adjustable parameters which are matched to experimentally available information on

the range of superconducting correlations in the pseudogap state.

The massive Doppler gauge field vµ does not appear in the above expression, since

it merely generates short range interactions among the fermions.

In contrast, Berry gauge field aµ remains massless in the pseudogap state, as it

cannot acquire mass by coupling to the fermions. As seen from Eq. (3.47) aµ couples

minimally to the Dirac fermions and therefore its massless character is protected by

gauge invariance. Physically, one can also argue that aµ couples to the TF spin three-

current – in a spin-singlet d-wave superconductor SU(2) spin symmetry must remain

unbroken, thereby insuring that aµ remains massless. Its massless Maxwellian dy-

namics (3.48) in the pseudogap state can therefore be traced back to the topological

state of spacetime vortex loops and directly reflect the absence of true superconduct-

ing order or, equivalently, the presence of “vortex loop condensate” and dual order

(Appendix B.1).

We have also dispensed with the residual interactions represented by Hres in (3.2).

These interactions are generically short-ranged contributions from the p-h and am-

plitude fluctuations part of the p-p channel and in our new notation are exemplified

by:

Hres →
1

2

∑

l,l′

Ill′Ψ̃
†
l Ψ̃lΨ̃

†
l′Ψ̃l′ . (3.49)

The effective vertex Ill′ has a scaling dimension −1 at the engineering level. This

follows from the RG analysis near the massless Dirac points which sets the dimension

of Ψ̃l to [length]−1. The implication is that Ill′ is irrelevant for low energy physics in

the perturbative RG sense and we are therefore justified in setting Ill′ → 0. However,

the residual interactions are known to become important if stronger than some critical

value Ic [74, 75]. In the present theory, this is bound to happen in the severely

underdoped regime and at half-filling, as x → 0 (see Section 3.6). In this case,
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the residual interactions are becoming large and comparable in scale to the pairing

pseudogap ∆, and are likely to cause chiral symmetry breaking (CSB) which leads to

spontaneous mass generation for massless Dirac fermions. The CSB and its variety of

patterns in the context of the theory (3.47,3.48) in underdoped cuprates are discussed

in Section 3.6. Here, we shall focus on the chirally symmetric phase and assume

Ill′ < Ic, which we expect to be the case for moderate underdoping. Therefore, we

can set Ill′ → 0.

Finally, Eq. (3.47,3.48) represents the effective low energy theory for nodal TF.

This theory describes the problem of massless topological fermions interacting with

massless vortex “Beryons”, i.e. the quanta of the Berry gauge field aµ, and is formally

equivalent to the Euclidean quantum electrodynamics of massless Dirac fermions in

(2+1) dimensions (QED3). It, however, suffers from an intrinsic Dirac anisotropy by

virtue of vF 6= v∆.

3.3.1 Effective Lagrangian for the pseudogap state

Lagrangian (3.47) is not in the standard from as used in quantum electrodynamics

where the matrices associated with the components of covariant derivatives form

a Dirac algebra and mutually anticommute. In (3.47) the temporal derivative is

associated with unit matrix and it therefore commutes (rather than anticommutes)

with σ1 and σ3 matrices associated with the spatial derivatives. These nonstandard

commutation relations, however, lead to some rather unwieldy algebra. For this

reason we manipulate the Lagrangian (3.47) into a slightly different form that is

consistent with usual field-theoretic notation. First, we combine each pair of antipodal

(time reversed) two-component spinors into one 4-component spinor,

Υ1 =

(

Ψ̃1

Ψ̃1̄

)

, Υ2 =

(

Ψ̃2

Ψ̃2̄

)

. (3.50)

Second, we define a new adjoint four-component spinor

Ῡl = −iΥ†
lγ0. (3.51)
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In terms of this new spinor the Lagrangian becomes

LD =
∑

l=1,2

ῩlγµD
(l)
µ Υl +

1

2
Kµ(∂ × a)2

µ , (3.52)

with covariant derivatives

D(1)
µ = i[(∂τ + iaτ ), vF (∂x + iax), v∆(∂y + iay)],

D(2)
µ = i[(∂τ + iaτ ), vF (∂y + iay), v∆(∂x + iax)].

The 4 × 4 gamma matrices, defined as

γ0 =

(

σ2 0

0 −σ2

)

, γ1 =

(

σ1 0

0 −σ1

)

,

γ2 =

(

−σ3 0

0 σ3

)

(3.53)

now form the usual Dirac algebra,

{γµ, γν} = 2δµν (3.54)

and furthermore satisfy

Tr(γµ) = 0 , Tr(γµγν) = 4δµν . (3.55)

The use of the adjoint spinor Ῡ instead of conventional Υ† is a purely formal device

which will simplify calculations but does not alter the physical content of the theory.

At the end of the calculation we have to remember to undo the transformation (3.51)

by multiplying the 〈Υ(x)Ῡ(x′)〉 correlator by iγ0 to obtain the physical correlator

〈Υ(x)Υ†(x′)〉.
Next, to make the formalism simpler still we can eliminate the asymmetry between

the two pairs of nodes by performing an internal SU(2) rotation at nodes 2, 2̄:

Υ2 → e−i
π
4
γ0γ1Υ2, (3.56)

leading to the anisotropic QED3 Lagrangian

LD =
∑

l=1,2

Ῡlv
(l)
µ γµ(i∂µ − aµ)Υl +

1

2
Kµ(∂ × a)2

µ , (3.57)
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with v
(1)
µ = (1, vF , v∆) and v

(2)
µ = (1, v∆, vF ).

We shall start by considering the isotropic case, vF = v∆ = 1, which although

unphysical in the strictest sense, is computationally much simpler and provides pen-

etrating insights into the physics embodied by the QED3 Lagrangian (3.57). After

we have understood the isotropic case we will then be ready to tackle the calcula-

tion for the general case and will show that Dirac cone anisotropy does not modify

the essential physics discussed here. To make contact with standard literature on

QED3, we further consider a more general problem with N pairs of nodes described

by Lagrangian

LD =

N
∑

l=1

Ῡlγµ(i∂µ − aµ)Υl +
1

2
Kµ(∂ × a)2

µ . (3.58)

For the basic problem of a single CuO2 layer N = 2. As we will show in the next

Section, N itself is variable and can be equal to four or six in bi- and multi-layer

cuprates. Our analytic results can be viewed as arising from the formal 1/N expan-

sion, although we expect them to be qualitatively (and even quantitatively!) accurate

even for N = 2 as long as we are within the symmetric phase of QED3 – the quan-

titative accuracy stems from a fortuitous conspiracy of small numerical prefactors

[74].

3.3.2 Berryon propagator

Ultimately, we are interested in the properties of physical electrons. To describe

those we need to understand the properties of the electron–electron interaction medi-

ated by the gauge field aµ. To this end we proceed to calculate the Berry gauge field

propagator by integrating out the fermion degrees of freedom from the Lagrangian

(3.58). To one loop order this corresponds to evaluating the vacuum polarization

bubble Fig. 3.2(a). Employing the standard rules for Feynman diagrams in the

momentum space [76] the vacuum polarization reads:

Πµν(q) = N

∫

d3k

(2π)3
Tr[G0(k)γµG0(k + q)γν]. (3.59)

Here G0(k) = kαγα/k
2 is the free Dirac Green function, k = (k0,k) denotes the

Euclidean three-momentum, and the trace is performed over the γ matrices.
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Figure 3.2: One loop Berryon polarization (a) and TF self energy (b).

The integral in Eq. (3.59) is a standard one (see Appendix B.2 for the details of

computation) and the result is

Πµν(q) =
N

8
|q|
(

δµν −
qµqν
q2

)

, (3.60)

where |q| =
√

q2. The one loop effective action for the Berry gauge field therefore

becomes (2π)−3
∫

d3qLB with

LB[a] =

(

N

8
|q| + 1

2e2
q2

)(

δµν −
qµqν
q2

)

aµ(q)aν(−q) . (3.61)

At low energies and long wavelengths, |q|e2 � N/4, the fermion polarization com-

pletely overwhelms the original Maxwell bare action term and the Berryon properties

become universal. In particular, the coupling constant 1/e2 drops out at low energies

and only reappears as the ultraviolet cutoff. Physically, the medium of massless Dirac

fermions screens the long range interactions mediated by aµ. In QED3 this screening
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is incomplete: the gauge field becomes stiffer by one power of q but still remains

massless, in accordance with our general expectations. This anomalous stiffness of

aµ justifies the quadratic level expansion of L0 (3.45) and renders higher order terms

irrelevant in the RG sense. The theory therefore clears an important self-consistency

check.

At low energies the fully dressed Berryon propagator is given as an inverse of the

polarization,

Dµν(q) = Π−1
µν (q) . (3.62)

In order to perform this inversion we have to fix the gauge. To this end we implement

the usual gauge fixing procedure by replacing qµqν/q
2 → (1 − ξ−1)qµqν/q

2 in Eq.

(3.60). ξ ≥ 0 parameterizes the orbit of all covariant gauges. For example, ξ = 0

corresponds to Lorentz gauge kµaµ(k) = 0 while ξ = 1 corresponds to Feynman gauge.

Upon inversion we obtain the low energy Berryon propagator

Dµν(q) =
8

|q|N

(

δµν −
qµqν
q2

(1 − ξ)

)

, (3.63)

in agreement with previous authors [81].

3.3.3 TF self energy and propagator

Topological fermion (TF) propagator is a gauge dependent entity and one could

therefore immediately object that as such it has no direct physical content and is of no

interest. While in the strictest sense, all observable quantities are gauge independent

and the 2−point fermion function is manifestly not gauge independent, the depen-

dence on the choice of gauge can be confined to the field strength renormalization

[82]. In this Section we will show that in the leading order in large N expansion,

the TF propagator is a powerlaw. The powerlaw exponent depends on the choice of

gauge. Since we know that the theory flows to the strong coupling limit, we expect

that the powerlaw exponent describing the physical spectrum is not trivial i.e. the

poles in the spectrum are replaced by a branchcut. This means that the plane wave

states acquire finite lifetime at arbitrarily low energy.
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The lowest order (O(1/N)) self-energy diagram is depicted in Fig. 3.2(b) and reads

Σ(k) =

∫

d3q

(2π)3
Dµν(q)γµG0(k + q)γν. (3.64)

Again, the computation is rather straightforward (see Appendix B.2 for details) and

the most divergent part is

Σ(k) =
4(2 − 3ξ)

3π2N
6k ln

(

Λ

|k|

)

, (3.65)

where we have introduced the Feynman “slash” notation, 6k = kµγµ.

To the leading 1/N order, the inverse TF propagator is given by

G−1(k) =6k
[

1 + η ln

(

Λ

|k|

)]

(3.66)

with

η = −4(2 − 3ξ)

3π2N
. (3.67)

Higher order contributions in 1/N will necessarily affect this result. Renormalization

group arguments [78] and non-perturbative approaches [79] strongly suggest that Eq.

(3.66) represents the start of a perturbative series that eventually resums into a power

law:

G−1(k) =6k
(

Λ

|k|

)η

. (3.68)

This implies real-space propagator of the form

G(r) = Λ−η 6r
r3+η

. (3.69)

Thus, the TF propagator exhibits a Luttinger-like algebraic singularity at small mo-

menta, characterized by an anomalous exponent η. In the Lorentz gauge (ξ = 0)

we find η = −8/3π2N ' −0.13, for N = 2. This rather small numerical value for

the anomalous dimension exponent (which is even considerably smaller for N = 4

or N = 6) indicates that the unraveling of the Fermi liquid pole in the original TF

propagator brought about by its interaction with the massless Berry gauge field is in

a certain sense “weak”. Note also that η is negative in the Lorentz gauge while it

becomes positive, η = 4/3π2N ' 0.06 for N = 2, in the Feynman gauge (ξ = 1). The

above results provide a strong indication that the physical, gauge-invariant fermion

propagator also has a Luttinger-like form, characterized by a small and positive anom-

alous dimension [58].
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3.4 Effects of Dirac anisotropy in symmetric QED3

It is natural to examine to what extend is the theory modified by the inclusion of

the Dirac anisotropy, i.e. the finite difference in the Fermi velocity vF and the gap

velocity v∆. In the actual materials the Dirac anisotropy αD = vF

v∆
decreases with

decreasing doping from ∼ 15 in the optimally doped to ∼ 3 in the heavily underdoped

samples.

There are two key issues: first, for a large enough number of Dirac fermion species

N , how is the chirally symmetric infrared (IR) fixed point modified by the fact that

αD 6= 1, and second, as we decrease N , does the chiral symmetry breaking occur at

the same value of N as in the isotropic theory. In this Section we address in detail

the first issue and defer the analysis of the second one to the future.

We determine the effect of the Dirac anisotropy, marginal by power counting, by

the perturbative renormalization group (RG) to first order in the large N expansion.

To the leading order δ in the small anisotropy αD = 1 + δ, we obtain the analytic

value of the RG βαD
-function and find that it is proportional to δ, i.e. in the infra red

the αD decreases when δ > 0 and the anisotropic theory flows to the isotropic fixed

point. On the other hand, when δ < 0, αD increases in the IR and again the theory

flows into the isotropic fixed point. These results hold even when anisotropy is not

small as shown by numerical evaluation of the β-function. Upon integration of the RG

equations we find small δ acquires an anomalous dimension ηδ = 32/5π2N . Therefore,

we conclude that the isotropic fixed point is stable against small anisotropy.

Furthermore, we show that in any covariant gauge renormalization of Σ due to the

unphysical longitudinal degrees of freedom is exactly the same along any space-time

direction. Therefore the only contribution to the RG flow of anisotropy comes from

the physical degrees of freedom and our results for βαD
stated above are in fact gauge

invariant.
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3.4.1 Anisotropic QED3

In the realm of condensed matter physics there is no Lorentz symmetry to safe-

guard the space-time isotropy of the theory. Rather, the intrinsic Dirac anisotropy

is always present since it ultimately arises from complicated microscopic interactions

in the solid which eventually renormalize to band and pairing amplitude dispersion.

Thus there is nothing to protect the difference in the Fermi velocity vF = ∂εk
∂k

and the

gap velocity v∆ = ∂∆k

∂k
from vanishing and, in fact, all HTS materials are anisotropic.

The value of αD can be directly measured by the angle resolved photo-emission

spectroscopy (ARPES), which is ultimately a ”high” energy local probe of vF and

v∆. Since QED3 is free on short distances, we can take the experimental values as

the starting bare parameters of the field theory.

The pairing amplitude of the HTS cuprates has dx2−y2 symmetry, and consequently

there are four nodal points on the Fermi surface with Dirac dispersion around which

we can linearize the theory. Note that the roles of x and y directions are interchanged

between adjacent nodes. As before, we combine the four two-component Dirac spinors

for the opposite (time reversed) nodes into two four-components spinors and label

them as (1, 1̄) and (2, 2̄) (see Fig. 3.1).

Thus, the two-point vertex function of the non-interacting theory for, say, 11̄

fermions is

Γ
(2)free

11̄
= γ0k0 + vFγ1k1 + v∆γ2k2. (3.70)

Therefore the corresponding non-interacting “nodal” Green functions are

Gn
0 (k) =

√
gnµνγµkν

kµgµνkν
≡ γnµkµ

kµgµνkν
. (3.71)

Here we introduced the (diagonal) “nodal” metric g
(n)
µν : g

(1)
00 =g

(2)
00 =1, g

(1)
11 =g

(2)
22 =v2

F ,

g
(1)
22 =g

(2)
11 =v2

∆, as well as the “nodal” γ matrices γn. In what follows we assume that

both vF and v∆ are dimensionless and that eventually one of them can be chosen to

be unity by an appropriate choice of the ”speed of light”.

Since αD 6= 1 breaks Lorentz invariance of the theory and since it is the Lorentz

invariance that protects the spacetime isotropy, we expect the β functions for αD to

acquire finite values. However, the theory still respects time-reversal and parity and
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for N large enough the system is in the chirally symmetric phase. These symmetries

force the fermion self-energy of the interacting theory to have the form

Σ11̄ = A(k11̄, k22̄) (γ0k0 + vF ζ1γ1k1 + v∆ζ2γ2k2) . (3.72)

where k11̄ ≡ kµg
(1)
µν kν and k22̄ ≡ kµg

(2)
µν kν. The coefficients ζi are in general different

from unity. Furthermore, there is a discrete symmetry which relates flavors 1, 1̄ and

2, 2̄ and the x and y directions in such a way that

Σ22̄ = A(k22̄, k11̄) (γ0k0 + v∆ζ2γ1k1 + vF ζ1γ2k2) . (3.73)

In the computation of the fermion self-energy, this discrete symmetry allows us to

concentrate on a particular pair of nodes without any loss of generality.

3.4.2 Gauge field propagator

As discussed above in the isotropic case, the effect of vortex-antivortex fluctuations

at T=0 on the fermions can, at large distances, be included by coupling the nodal

fermions minimally to a fluctuating U(1) gauge field with a standard Maxwell action.

Upon integrating out the fermions, the gauge field acquires a stiffness proportional to

k, which is another way of saying that at the charged, chirally symmetric fixed point

the gauge field has an anomalous dimension ηA = 1 (for discussion of this point in

the bosonic QED see [80]).

We first proceed in the transverse gauge (kµaµ = 0) which is in some sense the

most physical one considering that the ∇×a is physically related to the vorticity, i.e.

an intrinsically transverse quantity. We later extend our results to a general covariant

gauge. To one-loop order the screening effects of the fermions on the gauge field are

given by the polarization function

Πµν(k) =
N

2

∑

n=1,2

∫

d3q

(2π)3
Tr[Gn

0(q)γ
n
µG

n
0 (q + k)γnν ] (3.74)

where the index n denotes the fermion “nodal” flavor. The above expression can be

evaluated straightforwardly by noting that it reduces to the isotropic Πµν(k) once
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the integrals are properly rescaled [58]. The result can be conveniently presented by

taking advantage of the “nodal” metric gnµν as

Πµν(k) =
∑

n

N

16vFv∆

√

kαg
n
αβkβ

(

gnµν −
gnµρkρg

n
νλkλ

kαgnαβkβ

)

. (3.75)

Note that this expression is explicitly transverse, kµΠµν(k) = Πµν(k)kν = 0, and sym-

metric in its space-time indices. It also properly reduces to the isotropic expression

when vF = v∆ = 1.

However, as opposed to the isotropic case, it is not quite as straightforward to

determine the gauge field propagator Dµν . For example, as it stands the polarization

matrix (3.75) is not invertible, which makes it necessary to introduce some gauge-

fixing conditions. In our case the direct inversion of the 3 × 3 matrix would obscure

the analysis and therefore, we choose to follow a more physical and notationally

transparent line of reasoning which eventually leads to the correct expression for the

gauge field propagator. Upon integrating out the fermions and expanding the effective

action to the one-loop order, we find that

Leff [aµ] = (Π(0)
µν + Πµν)aµaν (3.76)

where the bare gauge field stiffness is

Π(0)
µν =

1

2e2
k2

(

δµν −
kµkν
k2

)

. (3.77)

At this point we introduce the dual field bµ which is related to aµ as

bµ = εµνλqνaλ. (3.78)

Physically, the bµ field represents vorticity and we integrate over all possible vorticity

configurations with the restriction that bµ is transverse. We note that

L[bµ] = χ0b
2
0 + χ1b

2
1 + χ2b

2
2 (3.79)

where χµ’s are functions of kµ and upon a straightforward calculation they can be

found to read

χµ =
1

2e2
+

N

16vFv∆

∑

n=1,2

gnννg
n
λλ

√

kαg
n
αβkβ

, (3.80)
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where µ 6= ν 6= λ ∈ {0, 1, 2}. At low energies we can neglect the non-divergent bare

stiffness and thus set 1/e2 = 0 in the above expression.

The expression (3.79) is manifestly gauge invariant and has the merit of not only

being quadratic but also diagonal in the individual components of bµ. Thus, integra-

tion over the vorticity (even with the restriction of transverse bµ) is simple and we

can easily determine the bµ field correlation function

〈bµbν〉 =
δµν
χµ

− kµkν
χµχν

(

∑

i

k2
i

χi

)−1

. (3.81)

The repeated indices are not summed in the above expression. Note that, in addition

to being transverse, 〈bµbν〉 is also symmetric in its space time indices.

It is now quite simple to determine the correlation function for the aµ field and in

the transverse gauge we obtain

Dµν(q) = 〈aµaν〉 = εµijενkl
qiqk
q4

〈bjbl〉. (3.82)

Using the transverse character of 〈bµbν〉 (which is independent of the gauge) the above

expression can be further reduced to

Dµν(q) =
1

q2

((

δµν −
qµqν
q2

)

〈b2〉 − 〈bµbν〉
)

. (3.83)

It can be easily checked that in the isotropic limit the expression (3.83) properly

reduces to the results obtained in a different way.

We can further extend this result to include a general gauge by writing

Dµν(q) =
1

q2

((

δµν − (1 − ξ

2
)
qµqν
q2

)

〈b2〉 − 〈bµbν〉
)

. (3.84)

where ξ is our continuous parameterization of the gauge fixing. This expression can

be justified by the Fadeev-Popov type of procedure starting from the Lagrangian

L =

(

Πµν +
1

ξ

2k2

〈b2〉
kµkν
k2

)

aµaν , (3.85)

where the stiffness for the unphysical modes was judiciously chosen to scale as k in

a particular combination of the physical scalars of the theory. Note that 〈b2〉 can be
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determined without ever considering gauge fixing terms. In this way, the extension

of a transverse gauge ξ = 0 to a general covariant gauge is accomplished by a simple

substitution kµkν → (1 − ξ
2
)kµkν. The expression (3.84) is our final result for the

gauge field propagator in a covariant gauge.

3.4.3 TF self energy

As discussed above, Σ is not gauge invariant in that it has an explicit dependence

on the gauge fixing parameter. As we will show in this Section (and more generally in

the Appendix B.3), the renormalization of Σ by the unphysical longitudinal degrees

of freedom does not depend on the space-time direction: the term in Σ which is

proportional to γ0 is renormalized the same way by the gauge dependent part of the

action as the terms proportional to γ1 and γ2. Therefore, the only contribution to

the RG flow of αD comes from the physical degrees of freedom.

We denote the topological fermion self-energy at the node n by Σn(q). Hence, to

the leading order in large N expansion we have

Σn(q) =

∫

d3k

(2π)3
γnµG

n
0 (q − k)γnνDµν(k). (3.86)

or explicitly

Σn(q) =

∫

d3k

(2π)3
γnµ

(q − k)λγ
n
λ

(q − k)µgµν(q − k)ν
γnνDµν(k), (3.87)

where the gauge field propagatorDµν is already screened by the nodal fermions (3.84).

Using the fact that

γµγλγν = iεµλνγ5γ3 + δµλγν − δµνγλ + δλνγµ, (3.88)

where µ, ν, λ ∈ {0, 1, 2} and γ5 ≡ −iγ0γ1γ2γ3, we can easily see that

γnµγ
n
λγ

n
νDµν = (2gnλµγ

n
ν − γnλg

n
µν)Dµν , (3.89)

where we used the symmetry of the gauge field propagator tensor Dµν. Thus,

Σn(q) =

∫

d3k

(2π)3

(q − k)λ(2g
n
λµγ

n
ν − γnλg

n
µν)Dµν(k)

(q − k)µgnµν(q − k)ν
(3.90)
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and as shown in the Appendix B.3 at low energies this can be written as

Σn(q) = −
∑

µ

ηnµ(γ
n
µqµ) ln

(

Λ
√

qαg
n
αβqβ

)

. (3.91)

Here Λ is an upper cutoff and the coefficients η are functions of the bare anisotropy,

which have been reduced to a quadrature (see Appendix B.3). It is straightforward,

even if somewhat tedious, to show that in case of weak anisotropy (vF = 1+δ, v∆ = 1),

to order δ2,

η11̄
0 = − 8

3π2N

(

1 − 3

2
ξ − 1

35
(40 − 7ξ) δ2

)

(3.92)

η11̄
1 = − 8

3π2N

(

1 − 3

2
ξ +

6

5
δ − 1

35
(43 − 7ξ) δ2

)

(3.93)

η11̄
2 = − 8

3π2N

(

1 − 3

2
ξ − 6

5
δ − 1

35
(1 − 7ξ) δ2

)

. (3.94)

In the isotropic limit (vF = v∆ = 1) we regain ηnµ = −8(1 − 3
2
ξ)/3π2N as previously

found by others.

3.4.4 Dirac anisotropy and its β function

Before plunging into any formal analysis, we wish to discuss some immediate

observations regarding the RG flow of the anisotropy. Examining the Eq. (3.91) it is

clear that if ηn1 = ηn2 then the anisotropy does not flow and remains equal to its bare

value. That would mean that anisotropy is marginal and the theory flows into the

anisotropic fixed point. In fact, such a theory would have a critical line of αD. For

this to happen, however, there would have to be a symmetry which would protect the

equality ηn1 = ηn2 . For example, in the isotropic QED3 the symmetry which protects

the equality of η’s is the Lorentz invariance. In the case at hand, this symmetry is

broken and therefore we expect that ηn1 will be different from ηn2 , suggesting that the

anisotropy flows away from its bare value. If we start with αD > 1 and find that

η11̄
2 > η11̄

1 at some scale p < Λ, we would conclude that the anisotropy is marginally

irrelevant and decreases towards 1. On the other hand if η11̄
2 < η11̄

1 , then anisotropy

continues increasing beyond its bare value and the theory flows into a critical point

with (in)finite anisotropy.
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The issue is further complicated by the fact that ηnµ is not a gauge invariant

quantity, i.e. it depends on the gauge fixing parameter ξ. The statement that, say

ηn1 > ηn2 , makes sense only if the ξ dependence of ηn1 and ηn2 is exactly the same,

otherwise we could choose a gauge in which the difference ηn2 − ηn1 can have either

sign. However, we see from the equations (3.92-3.94) that in fact the ξ dependence

of all η’s is indeed the same. Although it was explicitly demonstrated only to the

O(δ2), in the Appendix B.3 we show that it is in fact true to all orders of anisotropy

for any choice of covariant gauge fixing. This fact provides the justification for our

procedure. Now we supply the formal analysis reflecting the above discussion.

The renormalized 2-point vertex function is related to the “bare” 2-point vertex

function via a fermion field rescaling Zψ as

Γ
(2)
R = ZψΓ(2). (3.95)

It is natural to demand that for example at nodes 1 and 1̄ at some renormalization

scale p, Γ
(2)
R (p) will have the form

Γ
(2)
R (p) = γ0p0 + vRF γ1p1 + vR∆γ2p2. (3.96)

Thus, the equation (3.96) corresponds to our renormalization condition through which

we can eliminate the cutoff dependence and calculate the RG flows.

To the order of 1/N we can write

Γ
(2)
R (p) = Zψγ

n
µpµ

(

1 + ηnµ ln
Λ

p

)

(3.97)

where we used the fermionic self-energy (3.91). Multiplying both sides by γ0 and

tracing the resulting expression determines the field strength renormalization

Zψ =
1

1 + ηn0 ln Λ
p

≈ 1 − ηn0 ln
Λ

p
. (3.98)

We can now determine the renormalized Fermi and gap velocities

vRF
vF

≈ (1 − η11̄
0 ln

Λ

p
)(1 + η11̄

1 ln
Λ

p
) ≈ 1 − (η11̄

0 − η11̄
1 ) ln

Λ

p
(3.99)

and
vR∆
v∆

≈ (1 − η11̄
0 ln

Λ

p
)(1 + η11̄

2 ln
Λ

p
) ≈ 1 − (η11̄

0 − η11̄
2 ) ln

Λ

p
. (3.100)
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The corresponding renormalized Dirac anisotropy is therefore

αRD ≡ vRF
vR∆

≈ αD(1 − (η11̄
2 − η11̄

1 ) ln
Λ

p
). (3.101)

The RG beta function can now be determined

βαD
=

dαRD
d ln p

= αD(η11̄
2 − η11̄

1 ). (3.102)

In the case of weak anisotropy (vF = 1 + δ, v∆ = 1) the above expression can be

determined analytically as an expansion in δ. Using Eqs.(3.93-3.94) we obtain

βαD
=

8

3π2N

(

6

5
δ(1 + δ)(2 − δ) + O(δ3)

)

. (3.103)

Note that this expression is independent of the gauge fixing parameter ξ. For 0 <

δ � 1 the β function is positive which means that anisotropy decreases in the IR

and thus the anisotropic QED3 scales to an isotropic QED3. For −1 � δ < 0 the β

function is negative and in this case the anisotropy increases towards the fixed point

αD = 1, i.e. again towards the isotropic QED3. Note that for δ > 2, β < 0 which may

naively indicate that there is a fixed point at δ = 2; this however cannot be trusted

as it is outside of the range of validity of the power expansion of ηµ. The numerical

evaluation of the β-function shows that, apart from the isotropic fixed point and the

unstable fixed point at αD = 0, βαD
does not vanish (see Fig. 3.3). This indicates

that to the leading order in the 1/N expansion, the theory flows into the isotropic

fixed point where αD − 1 has a scaling dimension ηδ = 32/(5π2N) > 1.

3.5 Finite temperature extensions of QED3

In this Section we focus on thermodynamics and spin response of the pseudogap

state. First, in order to derive thermodynamics and spin susceptibility from the

QED3 theory [58] we generalize its form to finite T . This is a matter of some subtlety

since, the moment T 6= 0, the theory loses its fictitious “relativistic invariance”.

Second, we show that the theory predicts a finite T scaling form for thermodynamic

quantities in the pseudogap state. Third, we explicitly compute the leading T 6= 0
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Figure 3.3: The RG β-function for the Dirac anisotropy in units of 8/3π2N . The
solid line is the numerical integration of the quadrature in the Eq. (B.52) while the
dash-dotted line is the analytical expansion around the small anisotropy (see Eq.
(3.92-3.94)). At αD = 1, βαD

crosses zero with positive slope, and therefore at large
length-scales the anisotropic QED3 scales to an isotropic theory.

scaling and demonstrate that the deviations from “relativistic invariance” are actually

irrelevant for T much less than the pseudogap temperature T ∗, in the sense that the

leading order T 6= 0 scaling of thermodynamic functions remains that of the finite-T

symmetric QED3. These deviations from “relativistic invariance” do, however, affect

higher order terms. We illustrate these general results by computing the leading

(∼ T 2) and next-to-the leading (∼ T 3) terms in specific heat cv. Finally, we evaluate

magnetic spin susceptibility χu and show that it is bounded by T 2 at low T but

crosses over to ∼ T at higher T , closer to T ∗. Consequently, the Wilson ratio χuT/cv

vanishes as T → 0 implying the non-Fermi liquid nature of the pseudogap state in

cuprates.

We start by noting that the spin susceptibility of a BCS-like d-wave superconduc-

tor vanishes linearly with temperature. The way to understand this result is to notice

that the spin part of the ground state wavefunction, being a spin singlet, remains un-

perturbed by the application of a weak uniform magnetic field. However, the excited

quasiparticle states are not in general spin singlets and therefore contribute to the

thermal average of the spin susceptibility. Because their density of states is linear at

low energies, at finite temperature the number of quasiparticles that are excited is

∼ kBT , each contributing a constant to the Pauli-like uniform spin susceptibility χu.

Thus χu ∼ T .
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When the superconducting order is destroyed by proliferation of unbound quantum

hc/2e vortices, the low-energy quasiparticle excitations are strongly interacting. The

interaction originates from the fact that it is the spin singlet pairs that acquire a

one unit of angular momentum in their center of the mass coordinate, carried by

a hc/2e vortex. This translates into a topological frustration in the propagation

of the “spinon” excitations. As a result, non-trivial spin correlations persist in the

excited states of the phase-disordered d-wave superconductor. At low temperature,

this leads to a suppression of χu relative to that of the non-interacting quasiparticles.

We shall argue below that in the phase-disordered superconductor, χu ∼ T 2 at low

temperatures.

Similarly, in a d-wave superconductor, linear density of the quasiparticle states

translates into T 2 dependence of the low T specific heat. When the interactions

between quasiparticles are included the spectral weight is transferred to multi-particle

states. Within QED3 theory, however, the strongly interacting IR (infra-red) fixed

point possesses emergent “relavistivistic invariance” at long distances and low energies

and the dynamical critical exponent z = 1. Furthermore, the effective quantum action

for vortices, deep in the phase disordered pseudogap state, introduces an additional

lengthscale, the superconducting correlation length ξτ,⊥ (labels τ and ⊥ stand for

time- and space-like, respectively). At T = 0 this scale serves as a short distance

cutoff of the theory and possesses some degree of doping (x) dependence within the

pseudogap state. We then argue that under rather general circumstances the low T

electronic specific heat scales as T 2 while the free energy goes as T 3.

Deep in the phase disordered pseudogap state the fluctuations in the vorticity

3-vector bµ = εµνλ∂νaλ are described by the “bare” Lagrangian of the QED3 theory

[58]:

L0(aµ) =
K⊥
2
f⊥

(

T

k
,
T

ω
, TK⊥,τ

)

b20 +
Kτ

2
fτ

(

T

k
,
T

ω
, TK⊥,τ

)

~b2, (3.104)

where fτ (0, 0, 0) = f⊥(0, 0, 0) = 1. fτ,⊥ are general scaling functions describing how

L0(aµ) is modified from its “relativistically invariant” T = 0 form as the temperature

is turned on, and K⊥,τ is related to the superconducting correlation length as Kτ ∝
ξ2
sc/ξτ and K⊥ ∝ ξτ [58]. Physically, such modifications are due to changes in the
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pattern of vortex-antivortex fluctuations induced by finite T .

To handle the intrinsic space-time anisotropy, it is convenient to introduce two

tensors

Aµν =

(

δµ0 −
kµk0

k2

)

k2

~k2

(

δ0ν −
k0kν
k2

)

,

Bµν = δµi

(

δij −
kikj
~k2

)

δjν , (3.105)

and rewrite the gauge field action as

L0(aµ) =
1

2
Π0
AaµAµνaν +

1

2
Π0
BaµBµνaν . (3.106)

For details see Appendix B.4. It is straightforward to show that

Π0
A = Kτfτ

(

T

k
,
T

ω
, TK⊥,τ

)

(~k2 + ω2),

Π0
B = Kτfτ

(

T

k
,
T

ω
, TK⊥,τ

)

ω2 +K⊥f⊥

(

T

k
,
T

ω
, TK⊥,τ

)

~k2.

(3.107)

The gauge field aµ couples minimally to the Dirac fermions representing nodal

BCS quasiparticles [58]. Consequently, the resulting Lagrangian reads

L = ψ̄ (iγµ∂µ + γµaµ)ψ + L0(aµ) . (3.108)

The integration over Berry gauge field aµ reproduces the interaction among quasipar-

ticles arising from the topological frustration referred to earlier.

3.5.1 Specific heat and scaling of thermodynamics

The only lengthscales that appear in the thermodynamics are the thermal length ∼
1/T , and the superconducting correlation lengths K⊥,τ . At T = 0, the two correlation

lengths enter only as short distance cutoffs for the theory since the electronic action

is controlled by the IR fixed point of QED3. These observations allow us to write

down the general scaling form for the free energy

F(T ; x) = T 3Φ
(

Kτ (x)T,K⊥(x)T
)

. (3.109)
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In the above scaling form K⊥ is related to the T → 0 finite superconducting correla-

tion length of the pseudogap state ξsc(x). The ratio Kτ/Ksc describes the anisotropy

between time-like and space-like vortex fluctuations and is also a function of doping

x. The scaling expressions for other thermodynamic functions can be derived from

(3.109) by taking appropriate temperature derivatives. For details see Appendices

B.5 and B.6.

We are interested in the limit of the thermal length 1/T being much longer than

Kτ and K⊥ i.e. in the limit of Φ(x → 0, y → 0). This is precisely the limit in which

the free energy approaches the free energy of the finite temperature QED3. Therefore,

Φ(x, y) is regular at x = y = 0 (see Ref.[81]) and so in the limit of T → 0, F ∼ T 3 or

cv ∼ T 2.

3.5.2 Uniform spin susceptibility

The fermion fields ψ were defined in Ref. [58] where it is shown that the physical

spin density ψ†
↑ψ↑ − ψ†

↓ψ↓ is equal to the Dirac fermion density ψ̄γ0ψ.

To compute the spin-spin correlation function 〈Sz(−k)Sz(k)〉 we introduce an

auxiliary source Jµ(k) and couple it to fermion three current. Thus

L[ψ̄, ψ, aµ, Jµ] = ψ̄ (iγµ∂µ + γµ(aµ + Jµ))ψ + L0(aµ) (3.110)

and since it is the z-component of the spin that couples to the gauge field we have

〈Sz(−k)Sz(k)〉 =
1

Z[Jµ]

δ

δJ0(−k)
δ

δJ0(k)
Z[Jµ]

∣

∣

∣

Jµ=0
, (3.111)

Z being the quantum partition function. Now we let a′µ = aµ + Jµ and integrate

out both the fermions and the gauge field a′µ. The correlations between a′µ fields are

described by the polarization matrix which to the order of 1/N can be written in the

form Πµν = (Π0
A + ΠF

A)Aµν + (Π0
B + ΠF

B)Bµν. The resulting spin correlation function

is then readily found to be

〈Sz(−k)Sz(k)〉 =
ΠF
AΠ0

A

ΠF
A + Π0

A

~k2

~k2 + ω2
, (3.112)
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where ΠF
A denotes the fermion current polarization function. Due to the scale invari-

ance of the (massless) fermion action, the time component of the retarded polarization

function has the scaling form

ΠF ret
A (q, ω, T ) = NT PF

A

( q

T
,
ω

T

)

, (3.113)

where PF
A (x, y) is a universal function of its arguments and N is the number of the

4−component fermion species (see Appendix B.5). In the static limit, ω → 0,

lim
y→0

Re PF
A (x, y) =

2 ln 2

π
+

x2

24π
+ O(x3); x� 1 (3.114)

and

lim
y→0

Re PF
A (x, y) =

x

8
+

6ζ(3)

πx2
+ O(x−3); x � 1 (3.115)

while

lim
y→0

Im PF
A (x, y) =

2 ln 2

π

y

x
+ O

(

y2

x2

)

; x� 1 (3.116)

In addition, in the limit of ω = 0 and k → 0 we have

fτ

(

T

k
,∞, KτT

)

→ 1 + c
T 2

k2
(3.117)

where c is a pure number. Combining all of these results together we have

χ(ω = 0, q → 0) =
2N ln 2

π

KτT
2

2N ln 2
πc

+KτT
. (3.118)

There are several sources of correction to the scaling, and it is impossible to address

all of them without an explicit model for the vortices. Instead, we will concentrate on

the particular case of the corrections to scaling due to the Dirac cone anisotropy. It

was shown in the previous Section that the Dirac cone anisotropy αD = vF/v∆ scales

to unity at the QED3 IR fixed point. Alternatively, when defined as αD ≡ 1 + δ, δ

has a scaling dimension ηδ > 1. To the leading order in 1/N , ηδ = 32/(5π2N) (see

the previous Section). For simplicity, we assume that the bare action for the gauge

field is e−2F 2
µν . Then the T dependence of the free energy scales as

F =
T 3

v2
F

Φ

(

T

e2
,
vF
v∆

)

=
T 3

v2
F

Φ

(

T

e2
, 1 + δ(T )

)

(3.119)
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Thus, in the limit of T → 0 we have

F =
T 3

v2
F

Φ (0, 1) +
T 3+ηδ

v2
F

δ0Φ
′ (0, 1) . (3.120)

Therefore, while the leading order scaling of the free energy is analytic T 3, the cor-

rection to scaling is non-analytic T 3+ηδ .

3.6 Chiral symmetry breaking

In this Section we shall try to understand the physical nature of the instabilities

of the symmetric phase of QED3 or Algebraic Fermi Liquid.

We show that a phase disordered d-wave superconductor, as introduced in pre-

vious sections, becomes an antiferromagnet [83]. The antiferromagnetism emerges

via a phenomenon of spontaneous chiral symmetry breaking (CSB)[59, 60]. Away

from half filling, the broken symmetry phase typically takes the form of an incom-

mensurate spin-density-wave (SDW), whose periodicity is tied to the Fermi surface.

Furthermore, we show that numerous other states, most notably a d+ip and a d+is

phase-incoherent superconductors (dipSC, disSC) and “stripes”, i.e. superpositions

of 1D charge-density-waves (CDW) and phase-incoherent superconducting-density-

waves (SCDW), as well as continuous chiral rotations among them, are all energeti-

cally close and competitive with antiferromagnetism due to their equal membership

in the chiral manifold of two-flavor (N = 2) QED3. This large chiral manifold of

nearly degenerate states plays the key role in the QED3 theory as the culprit behind

the complexity of the HTS phase diagram.

The above results place tight restrictions on this phase diagram and provide means

to unify the phenomenology of cuprates within a single, systematically calculable

“QED3 Unified Theory” (QUT). Any microscopic description of cuprates, as long

as it leads to the large d-wave pairing pseudogap with T ∗ � Tc → 0, will conform

to the general results of QUT. In particular, all the physical states in natural ener-

getic proximity to a d-wave superconductor are the ones inhabiting the above chiral

manifold.
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For the sake of concreteness we restate the starting Lagrangian 3.47

LQED = ψ̄ncµ,nγµDµψn + L0[aµ] + (· · · ). (3.121)

Here ψ†
α = ψ̄αγ0 = (η†α, η

†
ᾱ) are the four-component Dirac spinors with η†α = 1√

2
Ψ†
α(1+

iσ1), η
†
ᾱ = 1√

2
Ψ†
ᾱσ2(1 + iσ1), and Ψ†

α = (ψ†
↑α, ψ↓α). Fermion fields ψσα(r, τ) describe

‘topological fermions’ of the theory and are related to the original nodal fermions

cσα(r, τ) via the singular gauge transformation (3.4). Index n labels (1, 1̄) and (2, 2̄)

pairs of nodes while α labels individual nodes, µ = τ, x, y(≡ 0, 1, 2). Dµ = ∂µ + iaµ

is a covariant derivative, cτ,n = 1, cx,1 = cy,2 = vF , cx,2 = cy,1 = v∆. The gamma

matrices are defined as γ0 = σ3 ⊗ σ3, γ1 = −σ3 ⊗ σ1, γ2 = −σ3 ⊗ σ2, and satisfy

{γµ, γν} = 2δµν . The Berry gauge field aµ encodes the topological frustration of

nodal fermions generated by fluctuating quantum vortex-antivortex pairs and L0 is

its bare action. The loss of superconducting phase coherence caused by unbinding of

vortex pairs is heralded in (3.121) by aµ becoming massless:

L0 →
1

2e2τ
(∂ × a)2

τ +
∑

i

1

2e2i
(∂ × a)2

i ; (3.122)

here e2
τ , e

2
i (i = x, y), as well as the velocities vF (∆), are functions of doping x and T .

Along with residual interactions between nodal fermions, denoted by the ellipsis in

(3.121), these parameters of QUT arise from some more microscopic description and

will be discussed shortly.

LQED (3.121) possesses the following peculiar continuous symmetry: borrowing

from ordinary quantum electrodynamics in (3+1) dimensions (QED4), we know that

there exist two additional gamma matrices, γ3 = σ1 ⊗ 1 and γ5 = iσ2 ⊗ 1 that anti-

commute with all γµ. We can define a global U(2) symmetry for each pair of nodes,

with generators 1 ⊗ 1, γ3, −iγ5 and 1
2
[γ3, γ5], which leaves LQED invariant. In QED3

this symmetry can be broken by two “mass” terms, mchψ̄nψn and mPTψ̄n
1
2
[γ3, γ5]ψn.

Spontaneous symmetry breaking in QED3 as a mechanism for dynamical mass gen-

eration has been extensively studied in the field theory literature [59]. It has been

established that while mPT is never spontaneously generated [84], the chiral mass mch

is generated if number of fermion species N is less than a critical value Nc. While
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Figure 3.4: Schematic phase diagram of a cuprate superconductor in QUT. Depending
on the value of Nc (see text), either the superconductor is followed by a symmetric

phase of QED3 which then undergoes a quantum CSB transition at some lower doping
(panel a), or there is a direct transition from the superconducting phase to the mch 6=
0 phase of QED3 (panel b). The label SDW/AF indicates the dominance of the
antiferromagnetic ground state as x→ 0.

still a matter of some controversy, standard non-perturbative methods give Nc ∼ 3

for isotropic QED3[59, 60], but as we shall discuss shortly, anisotropy and irrelevant

couplings present in Lagrangian (3.121) can change the value of Nc.

Let us now assume that CSB occurs and the mass term mchψ̄nψn is generated. We

wish to determine what is the nature of this chiral instability in terms of the original

electron operators. To make this apparent, let us consider a general chiral rotation

ψn → U
(n)
ch ψn with U

(n)
ch = exp(iθ3nγ3 + θ5nγ5). Within our representation of Dirac

spinors (3.121), the mchψ̄nψn mass term takes the following form:

mch cos(2Ωn)
[

η†ασ3ηα − η†ᾱσ3ηᾱ
]

+

+mch sin(2Ωn)
θ5n + iθ3n

Ωn
η†ασ3ηᾱ + h.c. , (3.123)

where Ωn =
√

θ2
3n + θ2

5n. mch acts as an order parameter for the bilinear combinations

of topological fermions appearing in (3.123). In the symmetric phase of QED3 (mch =
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Figure 3.5: The “Fermi surface” of cuprates, with the positions of nodes in the d-wave
pseudogap. The wavectors Q11̄,Q22̄,Q1̄2̄, etc. are discussed in the text.

0) the expectation values of such bilinears vanish, while they become finite, 〈ψ̄nψn〉 6=
0, in the broken symmetry phase.

The chiral manifold (3.123) is spanned by the “basis” of three symmetry breaking

states. When re-expressed in terms of the original nodal fermions cσα(r, τ), two of

these involve pairing in the particle-hole (p-h) channel – a cosine and a sine spin-

density-wave (SDW):

〈c†↑αc↑ᾱ − c†↓αc↓ᾱ〉 + h.c. (cos SDW)

i〈c†↑αc↑ᾱ − c†↑ᾱc↑α〉 + (↑→↓) (sin SDW) (3.124)

and are obtained from Eq. (3.123) by setting Ωn equal to π/4 or 3π/4. Rotations

within the chiral manifold (3.123) at fixed Ωn correspond to the sliding modes of

SDW.

A simple physical picture emerges here: we started from a d-wave superconducting

phase, our parent state. As one moves closer to half-filling and true phase coherence

is lost, strong vortex-antivortex pair fluctuations, acting under the protective um-

brella of a d-wave particle-particle (p-p) pseudogap, spontaneously induce formation

of particle-hole “pairs” at finite wavevectors ±Q11̄ and ±Q22̄, spanning the Fermi
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surface from node α to ᾱ (Fig. 3.5). The glue that binds these p-h “pairs” and plays

the role of “phonons” in this pairing analogy is provided by the Berry gauge field aµ.

Such “fermion duality” is a natural consequence of the QED3 theory (3.121). Remark-

ably, we find the antiferromagnetic insulator being spontaneously generated in form

of the incommensurate SDW. As we get very near half-filling and Q11̄,Q22̄ approach

(±π,±π), SDW acquires the most favored state status within the chiral manifold –

this is the consequence of umklapp processes which increase its condensation energy

without it being offset by either the anisotropy or a poorly screened Coulomb interac-

tion which plagues its CDW competitors to be introduced shortly. It seems therefore

reasonable to argue that this SDW must be considered the progenitor of the Neel-

Mott-Hubbard insulating antiferromagnet at half-filling. Thus, QED3 theory (3.121)

explains the origin of antiferromagnetic order in terms of strong vortex-antivortex

fluctuations in the parent d-wave superconductor. It does so naturally, through its

inherent and well-established chiral symmetry breaking instability [59].

The chiral manifold (3.123) contains also a third state, a p-p pairing state cor-

responding to Ωn = 0 or π/2 and best characterized as a d+ip phase-incoherent

superconductor:

i〈ψ↑αψ↓α − ψ↑ᾱψ↓ᾱ〉 + h.c. (dipSC) . (3.125)

We have written dipSC in terms of topological fermions ψσα(r, τ) since use of the

original fermions leads to more complicated expression which involves the backflow of

vortex-antivortex excitations described by gauge fields aµ and vµ (such backflow terms

do not arise in the p-h channel). This state breaks parity but preserves time reversal,

translational invariance and superconducting U(1) symmetries. To our knowledge,

such state has not been proposed as a part of any of the major theories of HTS. It is

an intriguing question whether this d+ip phase-incoherent superconductor can be the

actual ground state at some dopings in some of the cuprates. Its energetics does not

suffer from long range Coulomb problems but it is clearly inferior to the SDW very

close to half-filling since, being spatially uniform, it receives no help from umklapp.

Until now, we have discussed the CSB pattern only within individual pairs of

nodes, (1,1̄) and (2,2̄). What happens if we allow for chiral rotations that mix nodes
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1 and 2̄ or 1 and 2? A whole new plethora of states becomes possible, with chiral

manifold enlarged to include a superposition of one-dimensional p-h and p-p states,

an incommensurate CDW accompanied by a non-uniform phase-incoherent supercon-

ductor (SCDW) at wavevectors ±Q12 and ±Q2̄1̄ (Fig. 3.5):

1√
2
〈c†↑1c↑2 + c†↑2̄c↑1̄ + h.c.〉 + (↑→↓) (CDW)

1√
2
〈ψ↑1ψ↓2 + ψ↑2̄ψ↓1̄ + h.c.〉 + (↑↔↓) (SCDW) (3.126)

These same states, rotated by π/2, are replicated at wavevectors ±Q12̄ and ±Q21̄

(Fig. 2). In a fluctuating dx2−y2 superconductor these CDWs and SCDWs run along

the x and y axes and are naturally identified as the “stripes” of QUT. Note, however,

these are not the only one-dimensional states in QUT – among the states in the chiral

manifold (3.123) are also “diagonal stripes”, the combination of a SDW (3.124) along

±Q11̄ and a dipSC (3.125) which opens the mass gap only at nodes (2, 2̄), or vice

versa. Furthermore, a phase-incoherent d+is superconductor (disSC) is also present

within the chiral enlarged manifold, since it results in alternating signs for different

nodes with equal number of positive and negative “masses” for the two-component

nodal fermions:

i〈ψ↑1ψ↓1 + ψ↑1̄ψ↓1̄ + h.c.〉 + (1 → 2) (disSC) . (3.127)

In contrast, in a d+id phase incoherent superconductor these “masses” have the

same sign for all the nodes producing a maximal breaking of the PT symmetry [84].

Consequently, a d+id phase-incoherent superconductor is not spontaneously induced

within the QED3 theory.

In the isotropic (vF = v∆) N = 2 QED3 all these additional states plus arbitrary

chiral rotations among them are completely equivalent to those discussed previously.

It is here where we confront the problem of intrinsic anisotropy in Eq. (3.121). Such

anisotropy cannot be rescaled out and manifestly breaks the U(2)×U(2) degeneracy

of the full N = 2 chiral manifold down to two separate U(1)×U(1) (3.123) chiral

groups discussed previously. This is reflected in the general increase in energy of

the states from the enlarged chiral manifold. For example, the anisotropy raises the
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energy of our “stripe” states (3.126) relative to those of SDW, dipSC or “diagonal

stripes”. However, when the long range Coulomb interactions and coupling to the

lattice are included in the problem, as they are in real materials, it is conceivable

that the “stripes” would return in some form, either as a ground state or a long-lived

metastable state at some intermediate doping. disSC is also adversely affected by

anisotropy but to a lesser extent and might remain competitive with SDW, dipSC

and “diagonal stripes”. This state breaks time reversal symmetry but preserves parity

and the discussion concerning dipSC below Eq. (3.125) applies to disSC equally well.

How do we use these general results on CSB in QUT to address the specifics of

cuprate phase diagram? To this end, we need some effective combination of phenom-

enology and more microscopic descriptions to determine the parameters vF , v∆, eτ ,

ei and residual interactions (· · · ) appearing in LQED (3.121). The main task is to

determine what is the sequence of states within QUT that form stable phases as the

doping decreases toward half-filling under T ∗ in Fig. 3.4. While this is an extensive

project for the future, we outline here some of the general features. First, within

the superconducting state eτ , ei → 0 and aµ becomes massive thus denying the CSB

mechanism its main dynamical agent. We therefore expect that the superconductor

is in the symmetric phase and its nodal fermions form well-defined excitations[58].

As we move to the left in Fig. 3.4, the phase order is suppressed and eτ , ei become

finite, reflecting the unbinding of vortex-antivortex excitations[58]. For all practical

purposes, this is precisely what the experiments imply. Now, the key question is

whether the QED3 (3.121) remains in its symmetric phase or whether it immediately

undergoes the CSB transition and generates finite gap (mch 6= 0).

This question is difficult to answer in detail, because Nc can depend non-universally

on higher order coupling constants. For instance, short range interactions, while per-

turbatively irrelevant, effectively increase Nc if stronger than some critical value[74].

Such interactions, typically in the form of short range three-current terms[21], arise in

more microscopic models used to derive LQED and are prominent among the residual

terms denoted by ellipsis in (3.121). Their strength generically increases as x → 0.

These residual interactions play a dual role in QUT. First, they can conspire with the

anisotropy to produce the situation depicted in panel (b) of Fig. 3.4, where the CSB
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takes place as soon as the phase coherence is lost. Second, once the chiral symmetry

has been broken, the residual interactions further break the symmetry within the

chiral manifold (3.123) and play a role in selecting the true ground state.

3.7 Summary and conclusions

We considered the effect of fluctuations in the d-wave superconductor, concen-

trating on the role of the phase fluctuations and their effect on the nodal fermions.

The pairing pseudogap provided a reference point of our analysis which allowed us to

classify various quasiparticle interactions according to their fate under the renormal-

ization group. By carefully treating the interactions of the quasiparticles with the

vortex phase defects, we find that the low energy effective theory for the quasiparti-

cles inside the pairing protectorate is the (2+1) dimensional quantum electrodynamics

(QED3) with inherent spatial anisotropy, described by Lagrangian LD specified by

Eqs. (3.47,3.57).

Within the superconducting state the gauge fields of the theory are massive by

virtue of vortex defects being bound into finite loops or vortex-antivortex pairs. Such

massive gauge fields produce only short ranged interactions between our BdG qua-

siparticles and are therefore irrelevant: in the superconductor quasiparticles remain

sharp in agreement with prevailing experimental data [85]. Loss of the long range

superconducting order is brought about by unbinding the topological defects – vor-

tex loops or vortex-antivortex pairs – via Kosterlitz-Thouless type transition and its

quantum analogue. Remarkably, this is accompanied by the Berry gauge field becom-

ing massless. Such massless gauge field mediates long range interactions between the

fermions and becomes a relevant perturbation. Exactly what is the consequence of

this relevant perturbation depends on the number of fermion species N in the prob-

lem. For cuprates we argued that N = 2nCuO where nCuO is the number of CuO2

layers per unit cell. If N < Nc ' 3 [59], the interactions cause spontaneous opening

of a gap for the fermionic excitations at T = 0, via the mechanism of chiral symmetry

breaking in QED3 [59]. Formation of the gap corresponds to the onset of AF SDW

instability [58, 83] which must be considered as a progenitor of the Mott-Hubbard-
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Neel antiferromagnet at half-filling. If, on the other hand, N > Nc as will be the

case in bilayer or trilayer materials, the theory remains in its chirally symmetric non-

superconducting phase even as T → 0 and AF order arises from within such state

only upon further underdoping (Fig. 1). We call this symmetric state of QED3 an

algebraic Fermi liquid (AFL). In both cases AFL controls the low temperature, low

energy behavior of the pseudogap state and in this sense assumes the role played by

Fermi liquid theory in conventional metals and superconductors. In AFL the quasi-

particle pole is replaced by a branch cut – the quasiparticle is no longer sharp – and

the fermion propagator acquires a Luttinger-like form Eq. (3.68). To our knowledge

this is one of the very few cases where a non-Fermi liquid nature of the excitations

has been demonstrated in dimension greater than one in the absence of disorder or

magnetic field. This Luttinger-like behavior of AFL will manifest itself in anomalous

power law functional form of many physical properties of the system.

Dirac anisotropy, i.e. the fact that vF 6= v∆, plays important role in the cuprates

where the ratio αD = vF/v∆ in most materials ranges between 3 and 15−20. Such

anisotropy is nontrivial as it cannot be rescaled and it significantly complicates any

calculation within the theory. Using the perturbative renormalization group theory

we have shown that anisotropic QED3 flows back into isotropic stable fixed point.

This means that for weak anisotropy at long lengthscales the universal properties of

the theory are identical to those of the simple isotropic case. It remains to be seen

what are the properties of the theory at intermediate lengthscales when anisotropy is

strong.

The QED3 theory of the pairing pseudogap, as presented in here, starts from a

remarkably simple set of assumptions, and via manipulations that are controlled in

the sense of 1/N expansion, arrives at nontrivial consequences, including the algebraic

Fermi liquid and the antiferromagnet.
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Appendix A

Quasiparticle correlation functions

in the mixed state

A.1 Green’s functions: definitions and identities

The one-particle Green’s function matrix [52] is defined as

Ĝαβ(r1τ1; r2τ2) ≡ −〈TτΨα(1)Ψ†
β(2)〉 (A.1)

where Tτ denotes imaginary time ordering operator and α = 1, 2 denotes components

of a Nambu spinor Ψ†(1) which is a shorthand for Ψ†(r1, τ1) =
(

ψ†
↑(r1, τ1), ψ↓(r1, τ1)

)

.

Due to the time independence of the Hamiltonian (2.2), the Green’s function (A.1)

depends only on the imaginary time difference τ = τ1 − τ2. Therefore, its Fourier

transform is given by

Ĝ(r1, r2; iω) =
∫ β

0
eiωτ Ĝ(r1, r2, τ)dτ

Ĝ(r1, r2; τ) = 1
β

∑

iω

e−iωτ Ĝ(r1, r2; iω).

(A.2)

Here β = 1/(kBT ), T is temperature, and the fermionic frequency ω = (2l + 1)π/β, l ∈ Z.

Using the above relations, it is straightforward to derive the spectral representation

of the following correlation functions between Ψ and its imaginary time derivatives
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∂τΨ ≡ Ψ̇:


























〈TτΨα(1)Ψ†
β(2)〉

〈Tτ Ψ̇α(1)Ψ†
β(2)〉

〈TτΨα(1)Ψ̇†
β(2)〉

〈Tτ Ψ̇α(1)Ψ̇†
β(2)〉

= − 1

β

∑

iω

e−iwτ
∫

dε
Â(r1, r2; ε)

iω − ε



























+1

−ε
+ε

−ε2

(A.3)

The spectral function Â(r1, r2; ε) can be written in terms of eigenfunctions Φn(r) =

(un(r), vn(r))
T of the Bogoliubov-deGennes Hamiltonian Ĥ0 in the form:

Âαβ(r1, r2; ε) =
∑

n

δ(ε− εn)Φnα(r1)Φ
†
nβ(r2), (A.4)

where εn is the eigen-energy associated with an eigenstate labeled by the quantum

number n. Substituting (A.4) into (A.3) we can write the above correlation functions

solely in terms of the eigenfunctions Φn(r):


























〈TτΨα(1)Ψ†
β(2)〉

〈Tτ Ψ̇α(1)Ψ†
β(2)〉

〈TτΨα(1)Ψ̇†
β(2)〉

〈Tτ Ψ̇α(1)Ψ̇†
β(2)〉

=− 1

β

∑

iω,n

e−iwτ
Φnα(r1)Φ

†
nβ(r2)

iω − εn



























+1

−εn
+εn

−ε2n

(A.5)

In the calculations that follow we will also encounter Matsubara summations over

the fermionic frequencies ω = (2l + 1)π/β, l ∈ Z, of the form:

Snm(iΩ) =
1

β

∑

iω

1

(iω − εn)(iΩ + iω − εm)
(A.6)

where Ω = 2πk/β, k ∈ Z, is an outside bosonic frequency. The sum (A.6) can be

evaluated using standard techniques (see e.g. [52]) and yields:

Snm(iΩ) =
fn − fm

εn − εm + iΩ
. (A.7)

Here fn is a short hand for the Fermi-Dirac distribution function f(εn) =
(

1 +

exp(βεn)
)−1

.

In order to derive spin and thermal currents we will need the explicit form of the

generalized velocity operator V introduced in (2.33):

V =

(

π

m
iv̂∆

iv̂∗
∆

π∗

m

)

(A.8)
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where the gap velocity operator is given by

iv̂∆ = i∆0ηδδe
iφ(r)/2

(

eiδ·p − e−iδ·p
)

eiφ(r)/2 (A.9)

and the canonical momentum equals

π=− i

2
δe

i
~

� r+δ
r

(p− e
c
A)·dl + h.c. (A.10)

The following identities for operators v̂∆ and π will be used in the next section:
{

π∗Ψ† · πΨ = i~∇ · (Ψ†πΨ) + Ψ†π2Ψ

π∗Ψ† · πΨ = −i~∇ · (π∗Ψ† Ψ) + (π∗)2Ψ† Ψ
(A.11)

Ψ†∆Ψ − ∆Ψ† Ψ =
1

2
∇ ·
(

Ψ† v̂∆Ψ − v̂∆Ψ† Ψ
)

(A.12)

The above equations are straightforward to derive in continuum, while on the tight-

binding lattice Eqs. (A.11) and (A.12) imply a symmetric definition of the lattice

divergence operator.

The identities (A.11,A.12) explicitly ensure that the generalized velocity operator

Vµ is Hermitian i.e it satisfies the following identity:
∫

drV∗Ψ†(r) Ψ(r) ≡
∫

drV∗
αβΨ

†
β(r) Ψα(r)

=

∫

drΨ†(r) VΨ(r). (A.13)

A.2 Spin current and spin conductivity tensor

The time derivative of spin density ρs = ~

2
(ψ†

↑ψ↑−ψ†
↓ψ↓) can be written in Nambu

formalism as

ρ̇s =
i

~
[H, ρs] =

~

2
(Ψ̇†Ψ + Ψ†Ψ̇) (A.14)

Using equations of motion (2.10) together with the explicit form of Ĥ0 operator (2.8)

we obtain

ρ̇s =
i

2

(

(π∗)2

2m
Ψ†

1 Ψ1 − Ψ†
1

π2

2m
Ψ1 + ∆̂Ψ†

1 Ψ2 − Ψ†
1∆̂Ψ2

+ ∆̂∗Ψ†
2 Ψ1 − Ψ†

2 ∆̂∗Ψ1 −
π2

2m
Ψ†

2 Ψ2 + Ψ†
2

(π∗)2

2m
Ψ2

)

. (A.15)
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Using the identities (A.11,A.12) it is easy to show that

ρ̇s = −~

4
∇µ(Ψ

†VµΨ + V ∗
µΨ† Ψ) = −∇ · js (A.16)

where the generalized velocity operator Vµ is defined in Eq. (A.8), and the last

equality follows from the continuity equation (2.31) relating the spin density ρs and

the spin current js. Upon spatial averaging and utilizing Eq. (A.13) we find the q → 0

limit of the spin current

jsµ =
~

2
Ψ†VµΨ. (A.17)

The evaluation of the spin current-current correlation function (2.29) is straight-

forward and yields:

Dµν(iΩ) = −~
2

4

∫ β

0

eiτΩ
[

Vµ(2)Vν(4)×

〈TτΨ†(1)Ψ(2)Ψ†(3)Ψ(4)〉 1, 2 → (x, τ)

3, 4 → (y, 0)

]

dτ (A.18)

Here Ψ(1) ≡ Ψ(r1, τ1) and similarly the operator Vµ(2) acts only on functions of r2.

Using Wick’s theorem, identity (A.5), and upon spatial averaging over x and y we

obtain

Dµν(iΩ) =
~

2

4

∑

mn

〈n|Vµ|m〉〈m|Vν|n〉Snm(iΩ). (A.19)

The double summation extends over the eigenstates |m〉 and |n〉 of the Hamiltonian

(2.8), and Smn(iΩ) is given in Eq. (A.7). Analytically continuing iΩ → Ω + i0 we

finally obtain the expression for the retarded correlation function:

DR
µν(Ω) =

~
2

4

∑

mn

V nm
µ V mn

ν

εn − εm + Ω + i0
(fn − fm). (A.20)

where V µ
mn is defined in (2.35) and fn is a short hand for the Fermi-Dirac distribution

function f(εn) =
(

1+exp(βεn)
)−1

. Finally, we substitute the last equation into (2.28)

to obtain

σsµν =
~

2

4i

∑

mn

V nm
µ V mn

ν

(εn − εm + i0)2
(fn − fm) (A.21)
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A.3 Thermal current and thermal conductivity ten-

sor

In order to calculate thermal currents and thermal conductivity in the magnetic

field we introduce a pseudo-gravitational potential χ = r · g/c2 [48, 49, 50, 51]. This

formal procedure is useful because it illustrates that the transverse thermal response

is not given just by Kubo formula, but in addition it includes corrections related to

magnetization. Throughout this section ~ = 1. The pseudo-gravitational potential

enters the Hamiltonian, up to linear order in χ, as

HT =

∫

dx (1 +
χ

2
)Ψ†(x) Ĥ0 (1 +

χ

2
)Ψ(x), (A.22)

where H0 is the Bogoliubov-deGennes Hamiltonian (2.8). The equations of motion

for the fields Ψ thus become

iΨ̇ = [Ψ, HT ] = (1 +
χ

2
)Ĥ0(1 +

χ

2
)Ψ

= (1 + χ)Ĥ0Ψ − i∇µχVµΨ. (A.23)

The last equality follows from the commutation relation (2.33). (Note that for χ 6= 0

the Eq. (A.23) differs from Eq. (2.10). Throughout this section Ψ̇ will refer to Eq.

(A.23) unless explicitly stated otherwise).

To find thermal current jQ we start with the continuity equation

ḣT + ∇ · jQ = 0. (A.24)

The Hamiltonian density hT follows from Eq. (A.22) and reads

hT =
1

2m∗

(

π∗
µΨ̃

†
1 πµΨ̃1 − πµΨ̃

†
2 π∗

µΨ̃2

)

− µΨ̃†
ασ

3
αβΨ̃β

+
1

2

(

Ψ̃†
α∆αβΨ̃β + ∆αβΨ̃

†
α Ψ̃β

)

(A.25)

where Ψ̃ = (1 + χ
2
)Ψ. Taking the time derivative of the Hamiltonian density hT and
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using Eqs.(A.11) and equations of motion (A.23) we obtain

ḣT = i[HT , hT ] =
i

2m
∇µ

(

˙̃Ψ†Πµ Ψ̃ − Π∗
µΨ̃

† ˙̃Ψ
)

+
1

2

(

Ψ̃α∆αβ
˙̃Ψβ − ˙̃Ψ†

α∆αβΨ̃β

)

+
1

2

(

∆αβ
˙̃Ψ†
α Ψ̃β − ∆αβΨ̃

†
α

˙̃Ψβ

)

(A.26)

where we introduced matrix operators

∆αβ =

(

0 ∆̂

∆̂∗ 0

)

, Πµ
αβ =

(

πµ 0

0 π∗
µ

)

. (A.27)

Here ˙̃Ψ = (1 + χ
2
)Ψ̇ and πµ is defined in Eq. (A.10). Finally we use (A.12) to extract

jQ from (A.26). Upon spatial averaging and using the Hermiticity of Vµ (A.13) the

thermal current jQ reads

jQµ =
i

2

(

Ψ̃†Vµ
˙̃Ψ − ˙̃Ψ†VµΨ̃

)

. (A.28)

Note that the expression for jQ contains two terms

jQ = jQ0 + jQ1 (A.29)

where jQ0 is independent of χ and jQ1 is linear in χ. Explicitly:

jQ0 (r) =
1

2
Ψ†{V, Ĥ0}Ψ (A.30)

and

jQµ,1(r) = − i

4
∂νχΨ† (VµVν − VνVµ) Ψ

+
∂νχ

4
Ψ†
(

(xνVµ + 3Vµxν)Ĥ0 + Ĥ0(3xνVµ + Vµxν)
)

Ψ (A.31)

where {a, b} = ab+ba. Analogously to the situation in the normal metal, the thermal

average of jQ1 does not in general vanish in the presence of the magnetic field [54].

The linear response of the system to the external perturbation can be described

by

〈jQµ 〉 = 〈jQ0µ〉 + 〈jQ1µ〉 = −(Kµν + Mµν)∂νχ ≡ −LQµν∂νχ (A.32)
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where

Kµν = −δ〈j
Q
0µ〉

δ ∂νχ
= − lim

Ω→0

PR
µν(Ω) − PR

µν(0)

iΩ
(A.33)

is the standard Kubo formula for a dc response [52], PR
µν(Ω) being the retarded

current-current correlation function, and

Mµν = −δ〈j
Q
1µ〉

δ ∂νχ

= −
∑

n

εnfn〈n| {Vµ, xν} |n〉 +
∑

n

i

4
fn〈n|[Vµ, Vν]|n〉 (A.34)

is a contribution from “diathermal” currents [54]. Note that the latter vanishes for the

longitudinal response while it remains finite for the transverse response. As we will

show later in this section, at T = 0 there is an important cancellation between (A.33)

and (A.34) which renders the thermal conductivity κµν well-behaved and prevents

the singularity from the temperature denominator in Eq. (2.48).

The retarded thermal current-current correlation function P R
µν(Ω) can be expressed

in terms of the Matsubara finite temperature correlation function

Pµν(iΩ) = −
∫ β

0

dτeiΩτ
〈

Tτ jµ(r, τ)jν(r
′, 0)

〉

(A.35)

as

PR
µν(Ω) = Pµν(iΩ → Ω + i0). (A.36)

The current jµ(r, τ) in Eq. (A.35) is given by

jµ(τ) =
1

2
(Ψ†(τ)Vµ∂τΨ(τ) − ∂τΨ

†(τ) VµΨ(τ)) (A.37)

As pointed out by Ambegaokar and Griffin [56] time ordering operator Tτ and time

derivative operators ∂τ do not commute and neglecting this subtlety can lead to for-

mally divergent frequency summations[38]. Taking heed of this subtlety, substitution

of (A.37) into (A.35) amounts to

Pµν(iΩ) = −1

4

∫ β

0

dτeiΩτV µ
αβ(2)V ν

γδ(4)

〈

Tτ Ψ̇
†
α(1)Ψβ(2)Ψ̇†

γ(3)Ψδ(4)

− Ψ̇†
α(1)Ψβ(2)Ψ†

γ(3)Ψ̇δ(4) − Ψ†
α(1)Ψ̇β(2)Ψ̇†

γ(3)Ψδ(4) + Ψ†
α(1)Ψ̇β(2)Ψ†

γ(3)Ψ̇δ(4)

〉

,

(A.38)
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where the notation follows Eq. (A.18) and Eq. (2.10). Upon utilizing the identities

(A.5) and (A.13) and performing the standard Matsubara summation we have

Pµν(iΩ) =
1

4

∑

nm

〈n|Vµ|m〉〈m|V ν|n〉(εn + εm)2Snm(iΩ) (A.39)

where Smn is given by Eq. (A.7). Analytically continuing iΩ → Ω + i0 we obtain

PR
µν(Ω) =

1

4

∑

nm

(εn + εm)2 V nm
µ V mn

ν

εn − εm + Ω + i0
(fn − fm). (A.40)

Note that the only difference between the Kubo contribution to the thermal response

(A.40) and the spin response (A.20) is the value of the coupling constant. In the

case of thermal response (A.40), the coupling constant is (εn + εm)/2 which is eigen-

state dependent, while in the case of spin response (A.20) it is ~/2 and eigenstate

independent.

Using Eq. (A.33) we find that the Kubo contribution to the thermal transport

coefficient is given by

Kµν = − i

4

∑

nm

(εn + εm)2

(εn − εm + i0)2
V nm
µ V mn

ν (fn − fm). (A.41)

This can be written as

Kµν = K(1)
µν +K(2)

µν (A.42)

where

K(1)
µν = − i

4

∑

nm

4εnεm
(εn − εm + i0)2

V nm
µ V mn

ν (fn − fm) (A.43)

and

K(2)
µν = − i

4

∑

nm

V nm
µ V mn

ν (fn − fm) (A.44)

Similarly, we can separate the “diathermal” contribution (A.34) as

Mµν = M (1)
µν +M (2)

µν (A.45)

where M
(1)
µν and M

(2)
µν refer to the first and second term in (A.34) respectively. Using

the completeness relation
∑

m |m〉〈m| = 1 it is easy to show that

M (2)
µν =

i

4

∑

mn

(fn − fm)V nm
µ V mn

ν . (A.46)

94



Comparison of (A.44) and (A.46) yields M
(2)
µν +K

(2)
µν = 0. Therefore the thermal

response coefficient is given by

LQµν = K(1)
µν +M (1)

µν . (A.47)

Utilizing commutation relationships (2.33), M
(1)
µν can be expressed in the form:

M (1)
µν =

∫

ηf(η)Tr
(

δ(η − Ĥ0)(x
µV ν − xνV µ)

)

dη (A.48)

where the integral extends over the entire real line. The rest of the section follows

closely Smrčka and Středa [50]. We define the resolvents G±:

G± ≡ (η ± i0 − Ĥ0)
−1 (A.49)

and operators

A(η) = iTr
(

Vµ
dG+

dη
Vνδ(η − Ĥ0) − Vµδ(η − Ĥ0)Vν

dG−

dη

)

B(η) = iTr
(

VµG
+Vνδ(η − Ĥ0) − Vµδ(η − Ĥ0)VνG

−
) (A.50)

To facilitate Sommerfeld expansion we note that response coefficients K
(1)
µν (T ),

M
(1)
µν (T ), σsµν(T ) have generic form

L(T ) =

∫

f(η)l(η)dη, (A.51)

and after integration by parts

L(T ) = −
∫

df

dη
L̃(η)dη. (A.52)

Here L̃(ξ) is defined as

L̃(ξ) ≡
∫ ξ

−∞
l(η)dη. (A.53)

Note that L(T = 0) = L̃(ξ = 0) and in particular the spin conductivity at T = 0

satisfies σsµν(T =0) = σ̃sµν(ξ=0). Identities (A.52) and (A.53) will enable us to express

the coefficients at finite temperature through the coefficients at zero temperature. For

example, it follows from Eq. (A.48) that

M̃ (1)(ξ) =

∫ ξ

−∞
ηTr

(

δ(η − Ĥ0)(x
µV ν − xνV µ)

)

(A.54)
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and from Eqs.(A.21, A.50)

σ̃sµν(ξ)=
1

4

∫ ξ

−∞
A(η)dη (A.55)

Similarly, coefficient K
(1)
µν from (A.43) can be written as

K(1)
µν = −i

∫

dηf(η)η
∑

δ(η − εn)εm

(

V nm
µ V mn

ν

(η − εm + i0)2
− V mn

µ V nm
ν

(η − εm − i0)2

)

(A.56)

so that

K̃(1)
µν (ξ) ≡ −i

∫ ξ

−∞
dη η

∑

δ(η − εn)εm

(

V nm
µ V mn

ν

(η − εm + i0)2
− V mn

µ V nm
ν

(η − εm − i0)2

)

(A.57)

Using definitions (A.50), K̃(1)(ξ) can be expressed as

K̃(1)
µν (ξ) =

∫ ξ

−∞
η2A(η)dη +

∫ ξ

−∞
ηB(η)dη. (A.58)

After integration by parts one obtains

K̃(1)
µν (ξ) = ξ2

ξ
∫

−∞

A(η)dη +

ξ
∫

−∞

(η2 − ξ2)

(

A(η) − 1

2

dB

dη

)

dη. (A.59)

As shown in Ref. ([50]) the last term in this expression is exactly compensated by

M̃ (1)(ξ): This becomes evident after noting that definitions in Eq. (A.50) imply

A− 1

2

dB(η)

dη
=

1

2
Tr

[

dδ(η − Ĥ0)

dη
(xµV ν − xνV µ)

]

. (A.60)

Substituting the last identity into the Eq.(A.59) and integrating the second term by

parts we obtain

K̃(1)
µν (ξ) = ξ2

ξ
∫

−∞

A(η)dη −
ξ
∫

−∞

ηTr
(

δ(η − Ĥ0)(x
µV ν − xνV µ)

)

dη (A.61)

The second term here is equal to −M (1)
µν from (A.54). After the cancellation the result

simply reads:

L̃Qµν(ξ) = K̃(1)
µν (ξ) + M̃ (1)

µν (ξ) = ξ2

∫ ξ

−∞
A(η)dη. (A.62)
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Or, using (A.55)

L̃Qµν(ξ) =

(

2ξ

~

)2

σ̃sµν(ξ). (A.63)

Finally, from Eq.(A.52) we find

LQµν(T ) = − 4

~2

∫

df(η)

dη
η2σ̃sµν(η)dη. (A.64)
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Appendix B

Field theory of quasiparticles and

vortices

B.1 Jacobian L0

Here we derive the explicit form of the “Jacobian” L0 for two cases of interest: i)

the thermal vortex-antivortex fluctuations in 2D layers and ii) the spacetime vortex

loop excitations relevant for low temperatures (T � T ∗) deep in the underdoped

regime.

B.1.1 2D thermal vortex-antivortex fluctuations

In order to perform specific computations we have to adopt a model for vortex-

antivortex excitations. We will use a 2D Coulomb gas picture of vortex-antivortex

plasma. In this model (anti)vortices are either point-like objects or are assumed

to have a small hard-disk radius of size of the coherence length ξ0 which emulates

the core region. As long as ξ0 � n−1
2 , where n = nv + na is the average density

of vortex defects, the two models lead to very similar results and both undergo a

vortex-antivortex pair unbinding transition of the Kosterlitz-Thouless variety.
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Above the transition we have

exp [−β
∫

d2rL0] = 2−Nl

∑

A,B

∫

Dϕ(r) (B.1)

×δ[∇× v − 1
2
∇× (∇ϕA + ∇ϕB)]

×δ[∇× a − 1
2
∇× (∇ϕA −∇ϕB)] .

The phase ϕ(r) is due solely to vortices and we can rewrite (B.1) as:

∑

Nv ,Na

2−Nl

Nv!Na!

∑

A,B

Nv
∏

i

∫

d2ri

Na
∏

j

∫

d2rje
−βEc(Nv+Na) (B.2)

×δ
[

ρv(r) −
Nv
∑

i

δ(r − ri)
]

δ
[

ρa(r) −
Na
∑

j

δ(r − rj)
]

×δ
[

b(r) − π

NA
v
∑

i

δ(r − rAi ) + π

NB
v
∑

i

δ(r − rBi )

+π

NA
a
∑

j

δ(r − rAj ) − π

NB
a
∑

i

δ(r − rBj )
]

.

Here Nv(Na) is the number of free vortices (antivortices), Nl = Nv + Na, ri (rj)

are vortex (antivortex) coordinates and ρv(r) (ρa(r)) are the corresponding densities.

b(r) = (∇× a(r))z = π(ρAv − ρBv − ρAa + ρBa ) and Ec is the core energy which we have

absorbed into L0 for convenience. We now express the above δ-functions as functional

integrals over three new fields: dv(r), da(r) and κ(r):

∑

Nv ,Na

2−Nl

Nv!Na!

∑

A,B

Nv
∏

i

∫

d2ri

Na
∏

j

∫

d2rje
−βEc(Nv+Na) (B.3)

×
∫

DdvDdaDκ exp
{

i

∫

d2rdv(ρv(r) −
Nv
∑

i

δ(r − ri))

+i

∫

d2rda(ρa(r) −
Na
∑

j

δ(r − rj))

+i

∫

d2rκ
[

b(r) − π

NA
v
∑

i

δ(r − rAi ) + π

NB
v
∑

i

δ(r− rBi )

+π

NA
a
∑

j

δ(r − rAj ) − π

NB
a
∑

i

δ(r − rBj )
]}

.

99



The integration over δ-functions in the exponential is easily performed and the sum-

mation over A(B) labels can be carried out explicitly to obtain:

∫

DdvDdaDκ exp

[

i

∫

d2r
(

dvρv + daρa + κb
)

]

(B.4)

×
∑

Nv ,Na

e−βEcNv

Nv!

Nv
∏

i

∫

d2ri exp(−idv(ri)) cos(πκ(ri))

×e
−βEcNa

Na!

Na
∏

j

∫

d2rj exp(−ida(rj)) cos(πκ(rj)).

In the thermodynamic limit the sum (B.4) is dominated by Nv(a) = 〈Nv(a)〉, where

〈Nv(a)〉 is the average number of free (anti)vortices determined by solving the full

problem. Furthermore, as 〈Nv(a)〉 → ∞ in the thermodynamic limit the integration

over dv(r), da(r) and κ(r) can be performed in the saddle-point approximation leading

to the following saddle-point equations:

−ρv(r) + 〈Nv〉Ωv(r) = 0 (B.5)

−ρa(r) + 〈Na〉Ωa(r) = 0 (B.6)

−b(r) + [〈Nv〉Ωv(r) + 〈Na〉Ωa(r)] (B.7)

×π tanh(πκ(r)) = 0

with

Ωm(r) =
edm(r) cosh(πκ(r))

∫

d2r′edm(r′) cosh(πκ(r′))
, m = a, v.

Eqs. (B.5-B.7) follow from functional derivatives of (B.4) with respect to dv(r), da(r)

and κ(r), respectively. We have also built in the fact that the saddle-point solutions

occur at dv → idv, da → ida, κ→ iκ.

The saddle-point equations (B.5-B.7) can be solved exactly leading to:

dv(r) = ln ρv(r) − ln cosh(πκ(r)) (B.8)

da(r) = ln ρa(r) − ln cosh(πκ(r)) (B.9)

where

κ(r) =
1

π
tanh−1

[

b(r)

π(ρv(r) + ρa(r))

]

. (B.10)

100



Inserting (B.8-B.10) back into (B.4) finally gives the entropic part of L0/T :

ρv ln ρv + ρa ln ρa −
1

π
(∇× a)z tanh−1

[

(∇× a)z
π(ρv + ρa)

]

+ (ρv + ρa) ln cosh tanh−1

[

(∇× a)z
π(ρv + ρa)

]

, (B.11)

where ρv(a)(r) are densities of free (anti)vortices. We display L0 in this form to

make contact with familiar physics: the first two terms in (B.11) are the entropic

contribution of free (anti)vortices and the Doppler gauge field ∇ × v → π(ρv − ρa)

(〈∇ × v〉 = 0). The last two terms encode the “Berry phase” physics of topological

frustration. Note that the “Berry” magnetic field b = (∇× a)z couples directly only

to the total density of vortex defects ρv + ρa and is insensitive to the vortex charge.

This is a reflection of the Z2 symmetry of the original problem defined on discrete

(i.e., not coarse-grained) vortices. We write ρv(a)(r) = 〈ρv(a)〉 + δρv(a)(r) and expand

(B.11) to leading order in δρv(a) and ∇× a:

L0/T → (∇× v)2/(2π2nl) + (∇× a)2/(2π2nl), (B.12)

where nl = 〈ρv〉+〈ρa〉 is the average density of free vortex defects. Both v and a have

a Maxwellian bare stiffness and are massless in the normal state. As one approaches

Tc, nl ∼ ξ−2
sc → 0, where ξsc(x, T ) is the superconducting correlation length, and v

and a become massive (see the main text).

B.1.2 Quantum fluctuations of (2+1)D vortex loops

The expression for L0[jµ] given by Eq. (3.39) follows directly once the system

contains unbound vortex loops in its ground state and thus can respond to the exter-

nal perturbation Aext
µ over arbitrary large distances in (2+1)-dimensional spacetime.

This is already clear at intuitive level if we just think of the geometry of infinite

versus finite loops and the fact that only unbound loops allow vorticity fluctuations,

described by 〈jµ(q)jν(−q)〉, to proceed unhindered. Still, it is useful to derive (3.39)

and its consequences belabored in Section II within an explicit model for vortex loop

fluctuations.
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Here we consider fluctuating vortex loops in continuous (2+1)D spacetime and

compute L0[jµ] using duality map to the relativistic Bose superfluid [86]. We again

start by using our model of a large gap s-wave superconductor which enables us to

neglect aµ in the fermion action and integrate over it in the expression for L0[vµ, aµ]

(3.11). This gives:

e−
�
d3xL0 =

∞
∑

N=0

1

N !

N
∏

l=1

∮

Dxl[sl]δ
(

jµ(x) − nµ(x)
)

e−S̃ (B.13)

where

S̃ =

N
∑

l=1

S0

∮

dsl +
1

2

N
∑

l,l′=1

∮

dsl

∮

dsl′g(|xl[sl] − xl′ [sl′]|) (B.14)

and
(

∂ × ∂ϕ(x)
)

µ
= 2πnµ(x) = 2π

N
∑

l

∮

L

dxlµδ(x− xl[sl]) . (B.15)

In the above equations N is the number of loops, sl is the Schwinger proper time (or

“proper length”) of loop l, S0 is the action per unit length associated with motion of

vortex cores in (2+1)-dimensional spacetime (in an analogous 3D model this would

be εc/T , where εc is the core line energy), g(|xl[sl]−xl′ [sl′ ]|) is the short range penalty

for core overlap and L denotes a line integral. We kept our practice of including core

terms independent of vorticity into L0. Note that vortex loops must be periodic along

τ reflecting the original periodicity of ϕ(r, τ).

We can think of vortex loops as worldline trajectories of some relativistic charged

(complex) bosons (charged since the loops have two orientations) in two spatial di-

mensions. L0 without the δ-function describes the vacuum Lagrangian of such a

theory, with vortex loops representing particle-antiparticle virtual creation and an-

nihilation process. The duality map is based on the following relation between the

Green function of free charged bosons and a gas of free oriented loops:

G(x) = 〈φ(0)φ∗(x)〉 =

∫

d3k

(2π)3

eik·x

k2 +m2
d

=

∫ ∞

0

dse−sm
2
d

×
∫

d3k

(2π)3
eik·x−sk

2

=

∫ ∞

0

dse−sm
2
d

(

1

4πs

)
3
2

e−
x2

4s , (B.16)
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where md is the mass of the complex dual field φ(x). Within the Feynman path

integral representation we can write:

(

1

4πs

)3/2

e−
1
4
x2/s =

∫ x(s)=x

x(0)=0

Dx(s′) exp

[

−1

4

∫ s

0

ds′ẋ2(s′)

]

, (B.17)

where ẋ ≡ dx/ds. Furthermore, by simple integration (B.16) can be manipulated

into

Tr
[

ln(−∂2 +m2
d)
]

= −
∫ ∞

0

ds

s
e−sm

2
d

∫

d3k

(2π)3
e−sk

2

= −
∫ ∞

0

ds

s
e−sm

2
d

∮

Dx(s′) exp

[

−1

4

∫ s

0

ds′ẋ2(s′)

]

(B.18)

where the path integral now runs over closed loops (x(s) = x(0)). In the dual theory

this can be reexpressed as

Tr
[

ln(−∂2 +m2
d)
]

=

∫

d3k

(2π)3
ln(k2 +m2

d) . (B.19)

Combining (B.18) and (B.19) and using

Tr
[

ln(−∂2 +m2
d)
]

= ln Det(−∂2 +m2
d) ≡ W (B.20)

finally leads to:

e−W =
∞
∑

N=0

1

N !

N
∏

l=1

[
∫ ∞

0

dsl
sl
e−slm

2
d

∮

Dx(s′l)
]

×exp

[

−1

4

N
∑

l=1

∫ sl

0

ds′lẋ
2(s′l)

]

. (B.21)

This is nothing else but the partition function of the free loop gas. The size of loops

is regulated by md. As md → 0 the average loop size diverges. On the other hand,

through W (B.20), we can also think of (B.21) as the partition function of the free

bosonic theory.

To exploit this equivalence further we write

Zd =

∫

Dφ∗Dφe−
�
d3xLd , (B.22)

where

Ld = |∂φ|2 +m2
d|φ|2 +

g

2
|φ|4 , (B.23)
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and argue that Zd describes vortex loops with short range interactions in (B.13).

This can be easily demonstrated by decoupling |φ|4 through Hubbard-Stratonovich

transformation and retracing the above steps. The reader is referred to the book by

Kleinert for further details of the above duality mapping [86].

We can now rewrite the δ-function in (B.13) as

δ
(

jµ(x) − nµ(x)
)

→
∫

Dκµ exp
(

i

∫

d3xκµ(jµ − nµ)
)

(B.24)

and observe that in the above language of Feynman path integrals in proper time

i
∫

d3xκµnµ (B.15) assumes the meaning of a particle current three-vector nµ coupled

to a three-vector potential κµ. Employing the same arguments that led to (B.23) we

now have:

Ld[κµ] = |(∂ − iκ)φ|2 +m2
d|φ|2 +

g

2
|φ|4 , (B.25)

which leads to

e−
�
d3xL0[jµ] →

∫

Dφ∗DφDκµe−
�
d3x(−iκµjµ+Ld[κµ]) . (B.26)

In the pseudogap state vortex loop unbinding causes loss of superconducting phase

coherence. In the dual language, the appearance of such infinite loops as md → 0

implies superfluidity in the system of charged bosons described by Ld (B.23). The

dual off-diagonal long range order (ODLRO) in 〈φ(x)φ∗(x′)〉 means that there are

worldline trajectories that connect points x and x′ over infinite spacetime distances

– these infinite worldlines are nothing else but unbound vortex paths in this “vortex

loop condensate”. Thus, the dual and the true superconducting ODLRO are two

opposite sides of the same coin.

Ld[κµ] is the Lagrangian of this dual superfluid in presence of the external vector

potential κµ. In the ordered phase, the response of the system is just the dual ver-

sion of the Meissner effect. Consequently, upon functional integration over φ we are

allowed to write:

e−
�
d3xL0[jµ] =

∫

Dκµe−
�
d3x(−iκµjµ+M2

dκµκµ) , (B.27)
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where M2
d = |〈φ〉|2, with 〈φ〉 being the dual order parameter. The remaining func-

tional integration over κµ finally results in:

L0[jµ] →
jµjµ

4|〈φ〉|2 . (B.28)

We have tacitly assumed that the system of loops is isotropic. The intrinsic anisotropy

of the (2+1)D theory is easily reinstated and (B.28) becomes Eq. (3.39) of the main

text.

It is now time to recall that we are interested in a d-wave superconductor. This

means we must restore aµ to the problem. To accomplish this we engage in a bit of

thievery: imagine now that it was vµ whose coupling to fermions was negligible and

we could integrate over it in (3.11). We would then be left with only the δ-function

containing aµ. Actually, we can compute such L0[bµ/π], where ∂ × ∂a = b, without

any additional work. Note that L0 contains only vorticity independent terms. We can

equally well proclaim that it is the A(B) labels that determine the true orientation

of our loops while the actual vorticity is simply a gauge label – in essence, vµ and aµ

trade places. After the same algebra as before we obtain:

L0[bµ/π] → bµbµ
4π2|〈φ〉|2 , (B.29)

which is just the Maxwell action for aµ.

Of course, this simple argument that led to (B.29) is illegal. We cannot just forget

vµ. If we did we would have no right to coarse-grain aµ to begin with and would have

to face up to its purely Z2 character (see Section II). Still, the above reasoning does

illustrate that the Maxwellian stiffness of aµ follows the same pattern as that of vµ:

both are determined by the order parameter 〈φ〉 of condensed dual superfluid. Thus,

we can write the correct form of L0, with both vµ and aµ fully included into our

accounting, as

L0[vµ, aµ] →
(∂ × v)µ(∂ × v)µ

4π2|〈φ〉|2 +
(∂ × a)µ(∂ × a)µ

4π2|〈φ〉|2 , (B.30)

where our ignorance is now stored in computing the actual value of 〈φ〉 from the

original parameters of the d-wave superconductor problem. With anisotropy restored

this is precisely Eq. (3.45) of Section II.
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B.2 Feynman integrals in QED3

Many of the integrals encountered here are considered standard in particle physics.

Since the techniques involved are not as common in the condensed matter physics we

provide some of the technical details in this Appendix. A more in-depth discussion

can be found in many field theory textbooks [76].

B.2.1 Vacuum polarization bubble

The vacuum polarization Eq. (3.59) can be written more explicitly as

Πµν(q) = 2NTr[γαγµγβγν]Iαβ(q) (B.31)

with

Iαβ(q) =

∫

d3k

(2π)3

kα(kβ + qβ)

k2(k + q)2
. (B.32)

The integrals of this type are most easily evaluated by employing the Feynman para-

metrization [76]. This consists in combining the denominators using the formula

1

AaBb
=

Γ(a+ b)

Γ(a)Γ(b)

∫ 1

0

dx
xa−1(1 − x)b−1

[xA + (1 − x)B]a+b
, (B.33)

valid for any positive real numbers a, b, A, B. Setting A = k2 and B = (k + q)2

allows us to rewrite (B.32) as

Iαβ(q) =

∫ 1

0

dx

∫

d3k

(2π)3

kα(kβ + qβ)

[(k + (1 − x)q)2 + x(1 − x)q2]2
. (B.34)

We now shift the integration variable k → k − (1 − x)q to obtain

Iαβ(q) =

∫ 1

0

dx

∫

d3k

(2π)3

kαkβ − x(1 − x)qαqβ
[k2 + x(1 − x)q2]2

, (B.35)

where we have dropped terms odd in k which vanish by symmetry upon integration.

We now notice that kαkβ term will only contribute if α = β and we can therefore

replace it in Eq. (B.35) by 1
3
δαβk

2. With this replacement the angular integrals are

trivial and we have

Iαβ(q) =
1

2π2

∫ 1

0

dx

∫ ∞

0

dkk2
1
3
δαβk

2 − x(1 − x)qαqβ

[k2 + x(1 − x)q2]2
. (B.36)
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The only remaining difficulty stems from the fact that the integral formally diverges

at the upper bound. This divergence is an artifact of our linearization of the fermionic

spectrum which breaks down for energies approaching the superconducting gap value.

It is therefore completely legitimate to introduce an ultraviolet cutoff. Such UV

cutoffs however tend to interfere with gauge invariance preservation of which is crucial

in this computation. A more physical way of regularizing the integral Eq. (B.36) is

to recall that the gauge field must remain massless, i.e. Πµν(q → 0) = 0. To enforce

this property we write Eq. (B.31) as

Πµν(q) = 2NTr[γαγµγβγν][Iαβ(q) − Iαβ(0)], (B.37)

and we see that proper regularization of Eq. (B.36) involves subtracting the value of

the integral at q = 0. The remaining integral is convergent and elementary; explicit

evaluation gives

Iαβ(q) − Iαβ(0) = −|q|
64

(

δαβ +
qαqβ
q2

)

. (B.38)

Inserting this in (B.37) and working out the trace using Eqs. (3.54) and (3.55) we find

the result (3.60). Identical result can be obtained using dimensional regularization.

B.2.2 TF self energy: Lorentz gauge

For simplicity we evaluate the self energy (3.64) in the Lorentz gauge (ξ = 0).

Extension to arbitrary covariant gauge is trivial. Eq. (3.64) can be written as

ΣL(k) = − 2

π3N
γµIµ(k) (B.39)

with

Iµ(k) =

∫

d3qqµ
q · (k + q)

|q|3(k + q)2
, (B.40)

where we used an identity

γµγαγν

(

δµν −
qµqν
q2

)

= −2 6q qα
q2
.

Since the only 3-vector available is k, clearly the vector integral Iµ(k) can only have

components in the kµ direction, Iµ(k) = C(k)kµ/k
2. By forming a scalar product
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kµIµ(k) we obtain

C(k) = kµIµ(k) =

∫

d3q
(q · k)(q · k + q2)

|q|3(k + q)2
. (B.41)

Combining the denominators using Eq. (B.33) and following the same steps as in the

computation of polarization bubble above we obtain

C(k) =
3

2

∫ 1

0

dx
√
x

∫

d3q (B.42)

× (2x− 1)(k · q)2 − (1 − x)k2q2 + x(1 − x)2k4

[q2 + x(1 − x)k2]5/2
.

The angular integrals are trivial and after introducing an ultraviolet cutoff Λ and

rescaling the integration variable by |k| the integral becomes

C(k) = 2πk2

∫ 1

0

dx
√
x

∫ Λ
|k|

0

dq
(5x− 4)q4 + 3x(1 − x)2q2

[q2 + x(1 − x)]5/2
. (B.43)

The remaining integrals are elementary. Isolating the leading infrared divergent term

we obtain

C(k) → −4π

3
k2 ln

Λ

|k| . (B.44)

Substituting this to Eq. (B.39) we get the self energy (3.65).

B.3 Feynman integrals for anisotropic case

B.3.1 Self energy

As shown in the Section V, to first order in 1/N expansion, the topological fermion

self energy can be reduced to

Σn(q) =

∫

d3k

(2π)3

(q − k)λ(2g
n
λµγ

n
ν − γnλg

n
µν)Dµν(k)

(q − k)µgnµν(q − k)ν
. (B.45)

where Dµν(q) is the screened gauge field propagator evaluated in the Section 3. In

order to perform the radial integral, we rescale the momenta as

Kµ =
√
gnµνkν; Qµ =

√
gnµνqν (B.46)
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and obtain

Σn(q)=

∫

d3K

(2π)3

(Q−K)λ(2
√
gnλµγ

n
ν−γλgnµν)Dµν

(

Kν√
gn

µν

)

vFv∆(Q−K)2
. (B.47)

At low energies we can neglect the contribution from the bare field stiffness ρ in the

gauge propagator (see Section 3) and the resulting Dµν(q) exhibits 1
q

scaling

Dµν

(

Kν√
gnµν

)

=
Fµν(θ, φ)

|K| (B.48)

Now we can explicitly integrate over the magnitude of the rescaled momentum K by

introducing an upper cut-off Λ and in the leading order we find that

∫ Λ

0

dK
K2(Q−K)λ
K(Q−K)2

=−ΛK̂λ + ln

(

Λ

Q

)

(

Qλ−2K̂λK̂ ·Q
)

(B.49)

where K̂ = (cos θ, sin θ cosφ, sin θ sinφ). Since K̂µ is odd under inversion while Fµν

is even, it is not difficult to see that the term proportional to Λ vanishes upon the

angular integration. Thus

Σn(q) =

∫

dΩ

(2π)3vFv∆

(

Qλ − 2K̂λK̂ ·Q
)

(×)

(×)(2
√
gnλµγ

n
ν − γλg

n
µν)Fµν(θ, φ) ln

(

Λ

Q

)

. (B.50)

Using the fact that the diagonal elements of Fµν(θ, φ) are even under parity, while

the off-diagonal elements are odd under parity, the above expression can be further

simplified to

Σn(q) = −
∑

µ

(γnµqµη
n
µ) ln

(

Λ
√

qαgnαβqβ

)

(B.51)

where the coefficients ηnµ are pure numbers depending on the bare anisotropy and are

thereby reduced to a quadrature

ηnµ =

∫

dΩ

vFv∆(2π)3

(

(2K̂µK̂µ−1)(2gnµµFµµ−
∑

ν

gnννFνν)

+
∑

ν 6=µ
4K̂µK̂ν

√
gnµµ

√
gnννFµν

)

. (B.52)
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Repeated indices are not summed in the above expression, unless explicitly indicated.

In the case of weak anisotropy (vF = 1 + ε, v∆ = 1) we can show that the Eq.(B.52)

reduces to Eqs.(3.92-3.94).

Consider now the effect of the (covariant) gauge fixing term on ηµ. Let us define

the part of Fµν which depends on the gauge fixing parameter ξ as F
(ξ)
µν . The general

form of this term is F
(ξ)
µν = ξ kµkνf(k) where f(k) is a scalar function of all three

components of kµ; f(k) does in general depend on the anisotropy. Upon rescaling with

the nodal metric, see Eq.(B.46), we have F
(ξ)
µν = ξ 1√

gµµ
Kµ

1√
gνν
Kν f̃(K), where f̃(K)

is the corresponding scalar function of Kµ. Substituting F
(ξ)
µν into the Eq. (B.52) we

find

ηξµ=ξ

∫

dΩ f̃(K)

vFv∆(2π)3

(

(2K̂µK̂µ−1)(2K̂µK̂µ−
∑

ν

K̂νK̂ν)+
∑

ν 6=µ
4K̂µK̂νK̂µK̂ν

)

, (B.53)

where ηξµ is the part of ηµ which comes entirely from the gauge fixing term. Using

the fact that
∑

ν K̂νK̂ν = 1, it is a matter of simple algebra to show that

ηξµ=ξ

∫

dΩ f̃(K)

vFv∆(2π)3
(B.54)

i.e., the dependence on the index µ drops out! That means that the renormalization

of ηµ due to the unphysical longitudinal modes is exactly the same for all of its

components. Therefore, the difference in η1 and η2, which is related to the RG

flow of the Dirac anisotropy comes entirely from the physical modes and is a gauge

independent quantity. Note that this statement does not depend on the choice of the

covariant gauge, i.e. on the exact form of the function f , only on the fact that the

gauge is covariant.

B.4 Physical modes of a finite T QED3

Free massless Abelian gauge theory in d + 1− space-time dimensions has d − 1

physical degrees of freedom. The familiar example is the world we live in: light has

only two (transverse) physical degrees of freedom. Using the modern terminology,

photon is a spin 1 massless gauge particle, which restricts its spin projections to
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S = ±1. These two degrees of freedom contribute to the specific heat of a photon

gas.

When the gauge field interacts with matter, the situation is a little more involved.

In 3 + 1D QED, matter effectively decouples from light and so the leading order

contribution to the thermodynamics is just a sum of the contributions from the free

fermions and free light. However, exchange of a massless particle introduces long range

interactions between the fermions, thereby affecting the spectrum of the quantum

theory. While there are no collective modes in a free theory, the coupled theory has

multi-particle collective states in the spectrum, and these states will contribute to

the thermodynamics of the coupled system.

One way of computing such contributions, is to integrate out the fermions. The

partition function can be written as Z = Z0
fermiZ

eff
gauge, where Z0

fermi gives the free

fermion contribution to the free energy, while Zeff
gauge gives the contribution from the

dressed gauge field. If this gauge field action is expanded to quadratic order, then the

contribution from the gauge field can be computed exactly. It can be understood as

fermion dressing or renormalization of the free gauge field. In general, there are two

distinct processes: (1) the renormalization of the transverse components that con-

tributed to thermodynamics even without any fermions, and (2) the renormalization

of the longitudinal components, which did not contribute to thermodynamics in the

absence of matter. The latter can be understood as arising solely from the collective

modes of the fermions.

To see how all of this comes about in detail, consider the free gauge theory in

Euclidean space-time:

L0(aµ) =
1

2e2
aµΠµνaν; Πµν = (k2δµν − kµkν). (B.55)

For future benefit, we shall rewrite the polarization tensor using

Aµν =

(

δµ0 −
kµk0

k2

)

k2

k2

(

δ0ν −
k0kν
k2

)

,

Bµν = δµi

(

δij −
kikj
k2

)

δjν , (B.56)

where kµ = (ωn,k) and ωn = 2πnT is the bosonic Matsubara frequency. It is straight-

forward to see that δµν − kµkν/k
2 = Aµν + Bµν , and that the gauge field action is
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now

L0(aµ) =
1

2
Π0
AaµAµνaν +

1

2
Π0
BaµBµνaν , (B.57)

where Π0
A = Π0

B = (ω2
n + k2)/e2. We shall see later that to order 1/N the matter

fields modify ΠA and ΠB, but not the generic form of Eq. (B.57).

Finite temperature breaks Lorentz invariance in that it introduces a fixed length in

the temporal direction. Therefore, it is not convenient to use covariant gauge fixing

(as at T = 0); instead we shall work in Coulomb’s gauge ∇ · A = 0. This gauge

eliminates one of the d+ 1 degrees of freedom. In the free gauge theory, there is one

more non-physical degree of freedom. To see that this is indeed so, integrate out the

time component of the gauge field a0. Schematically, this proceeds as follows:

L = Π00a
2
0 + 2aiΠi0a0 + aiΠijaj; i 6= 0; (B.58)

= Π00

(

a0 +
1

Π00
Π0iai

)2

− 1

Π00
(Πi0ai)

2 + aiΠijaj (B.59)

=
k2

ω2
n + k2

ΠAã
2
0 + ΠB aiBijaj, (B.60)

where we shifted the time component of the gauge field in the functional integral,

ã = a0 + 1
Π00

Π0iai, and used the Eq. (B.56).

In the free field theory ΠA = Π0
A = (ω2

n + k2) and ΠB = Π0
B = (ω2

n + k2). Thus,

L0 = k2ã2
0 + (ω2

n + k2)

(

δij −
kikj
k2

)

aiaj. (B.61)

Since the coefficient in front of ã2
0 is independent of ωn and therefore independent

of temperature, this mode does not contribute to thermodynamics. In addition,

δij − kikj/k
2 projects out the spatial longitudinal mode, and only d − 1 transverse

massless modes contribute to thermodynamics.

When the gauge field interacts with the fermions, the effective quadratic action

for the gauge field is modified by the fermion renormalization of the polarization

functions: ΠA,B = Π0
A,B + ΠF

A,B . While it is still true that the longitudinal spatial

component of aµ is projected out, it is no longer true that the coefficient in front

of ã2
0 is independent of ωn. We must therefore include this ”mode” in computing

the thermodynamical free energy. For instance, in the problem of electrodynamics of
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metal with a Fermi surface, this mode is sharp at the plasma frequency. In QED3,

inclusion of this mode is essential to preserve the ”hyperscaling” of the (z = 1) theory,

in that cv ∼ T 2.

B.5 Finite Temperature Vacuum Polarization

In this section we shall compute the one loop polarization matrix of the finite

temperature QED3.

Πµν(q) =
N

β

∑

ωn

∫

d2k

(2π)2
Tr[G0(ωn,k)γµG0(Ω + ωn,k + q)γν], (B.62)

Πµν(q) =
N

β

∑

ωn

∫

d2k

(2π)2

Tr[γµγαγνγβ]kα(kβ + qβ)

k2(k + q)2
, (B.63)

where k = (ωn,k) = ((2n+ 1)πT,k). In the Euclidean space we have

Tr[γµγαγνγβ] = 4(δµαδνβ − δµνδαβ + δµβδνα) (B.64)

and so

Πµν(q) =
4N

β

∑

ωn

∫

d2k

(2π)2

Lµν(k; q)

k2(k + q)2
, (B.65)

where

Lµν(k; q) = kµ(kν + qν) + kν(kµ + qµ) − δµνkα(kα + qα) (B.66)

where repeated indices (α) are summed.

At T = 0, the natural way to proceed is to use Feynman parameters. However,

there is no advantage in doing so at finite T . Therefore, we shall first sum over the

fermionic Matsubara frequencies ωn; then, we perform the integral over k which we

split into an integral over the angle and the integral over the magnitude of k. The

integral over the angle can be performed analytically. However, the last integral over

the magnitude of k cannot be performed in the closed form. This happens quite fre-

quently in theories dealing with degenerate fermions. However, our results will differ

from such theories in an important qualitative way: there is no lengthscale associated

with the Fermi energy and this prohibits the use of Sommerfeld expansion. Instead,
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the theory is quantum critical and the only scales are given by the external frequency

and momentum, and by the temperature. We shall therefore use the expression for

the polarization matrix Πµν without performing the final integral for general (Ω, q, T )

and evaluate Πµν only for some of its limiting forms.

To proceed, define

Sµν(k, T ; iΩ,q) =
1

β

∑

ωn

Lµν (iωn,k; iΩ,q)

(k2 − (iωn)2)((k + q)2 − (iωn + iΩ)2)
(B.67)

= −
∮

Γ

dz

2πi

Lµν (z,k; iΩ,q)

(k2 − z2)((k + q)2 − (z + iΩ)2)

1

eβz + 1
, (B.68)

where the contour Γ includes the poles of the function nF (z) = 1/(eβz + 1) in the

positive (counterclockwise) sense and the negative sign comes from the residue of

nF (z) being −1. By deforming the contour around the remaining four poles it is easy

to see that

Sµν(k, T ; iΩ,q) =
nF (|k|)

2|k|
Lµν (|k|,k; iΩ,q)

((iΩ + |k|)2 − (k + q)2)
−nF (−|k|)

2|k|
Lµν (−|k|,k; iΩ,q)

((iΩ − |k|)2 − (k + q)2)
+

nF (|k + q|)
2|k + q|

Lµν (|k + q| − iΩ,k; iΩ,q)

((iΩ − |k + q|)2 − k2)
− nF (−|k + q|)

2|k + q|
Lµν (−|k + q| − iΩ,k; iΩ,q)

((iΩ + |k + q|)2 − k2)
.

(B.69)

So

Πµν(Ω,q) = 4N

∫

d2k

(2π)2
Sµν(k, T ; iΩ,q). (B.70)

We shall now concentrate on Πij where i, j denote the spatial indices. From here

we shall be able to extract both ΠF
A and ΠF

B. Since we eventually integrate over all

k, we can shift k + q → k in the last two terms in the Eq. (B.69) as well as reverse

the direction of k to obtain

Πij(iΩ,q) = 4N

∫

d2k

(2π)2

2nF (|k|) − 1

2|k|

(

2kikj + kiqj + kjqi − δij(k · q − iΩ|k|)
(iΩ)2 + 2iΩ|k| − 2k · q − q2

+ (iΩ → −iΩ)

)

.

(B.71)

Note that all the T dependence resides in the Fermi occupation factor nF . Since its

argument in the Eq.(B.71) is positive definite, at T = 0, nF (|k|) = 0 and the result

is Πµν(q;T = 0) = Nq/8(δµν − qµqν/q
2) as obtained by dimensional regularization.
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Therefore, at finite T we can write

Πµν(q;T ) = N
q

8

(

δµν −
qµqν
q2

)

+ δΠµν(iΩ,q) (B.72)

where

δΠij(iΩ,q) = 4N

∫

d2k

(2π)2

nF (|k|)
|k|

(

2kikj + kiqj + kjqi − δij(k · q − iΩ|k|)
(iΩ)2 + 2iΩ|k| − 2k · q − q2

+ (iΩ → −iΩ)

)

.

(B.73)

We next rotate the coordinate axis so that the vector q is aligned with the x-axis.

Since the denominator is even under reflection by the (new) x-axis we can simplify

the above equality to read

δΠij(iΩ,q) =
N

π2

(

δij −
qiqj
q2

)
∫ ∞

0

dknF (k)

∫ 2π

0

dθ
JB(iΩ, |q|, k; cos θ)

K(iΩ, |q|, k) − cos θ
+

N

π2

qiqj
q2

∫ ∞

0

dknF (k)

∫ 2π

0

dθ
JA(iΩ, |q|, k; cos θ)

K(iΩ, |q|, k) − cos θ
+ (iΩ → −iΩ), (B.74)

where

JA(iΩ, |q|, k; cos θ) =
iΩ

2|q| +
1

2
cos θ +

k

|q| cos2 θ,

JB(iΩ, |q|, k; cos θ) =
iΩ + 2k

2|q| − 1

2
cos θ − k

|q| cos2 θ,

K(iΩ, |q|, k) =
(iΩ)2 + 2iΩk − q2

2k|q| . (B.75)

Now, ΠF
µν = ΠF

AAµν + ΠF
BBµν (see Eq. B.56). Once written in this form, we can read

off the finite T corrections to ΠF
A and ΠF

B:

δΠF
A =

q2 + Ω2

Ω2

N

π2

∫ ∞

0

dknF (k)

∫ 2π

0

dθ
JA(iΩ, |q|, k; cos θ)

K(iΩ, |q|, k) − cos θ
+ (iΩ → −iΩ)(B.76)

δΠF
B =

N

π2

∫ ∞

0

dknF (k)

∫ 2π

0

dθ
JB(iΩ, |q|, k; cos θ)

K(iΩ, |q|, k) − cos θ
+ (iΩ → −iΩ) (B.77)

The above integrals can be computed analytically using contour integration since
∫ 2π

0

dθ f(cos θ) =

∮

C

dz

iz
f

(

z + z−1

2

)

, (B.78)

where the contour of integration is a unit circle around the origin encircled coun-

terclockwise. Since eventually we will need retarded polarization function in or-

der to compute physical quantities, we analytically continue the outside frequency
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iΩ → Ω + i0+. Putting everything together we finally arrive at

ΠF
A,B(iΩ → Ω + i0+, |q|, T ) = ΠFret

A,B (Ω, |q|, T ) (B.79)

where

ReΠFret
A (Ω, |q|, T ) =

Θ(q2−Ω2)
|q|
8

√

1 − Ω2

q2

[

1 +
16 ln 2

π

T

|q|

√

1 − Ω2

q2
− 4

π

∫ Ω
|q|

0

dx
√

1 − x2 nF

( |q|
2T

(

Ω

|q| − x

))

−

4

π

∫ 1

Ω
|q|

dx
√

1 − x2 nF

( |q|
2T

(

x− Ω

|q|

))

− 4

π

∫ 1

0

dx
√

1 − x2 nF

( |q|
2T

(

x +
Ω

|q|

))

]

+

Θ(Ω2−q2)
|q|
8

√

Ω2

q2
− 1

[

−16 ln 2

π

T

|q|

√

Ω2

q2
− 1 +

4

π

∫ Ω
|q|

1

dx
√
x2 − 1 nF

( |q|
2T

(

Ω

|q| − x

))

+

4

π

∫ ∞

Ω
|q|

dx
√
x2 − 1 nF

( |q|
2T

(

x− Ω

|q|

))

− 4

π

∫ ∞

1

dx
√
x2 − 1 nF

( |q|
2T

(

x +
Ω

|q|

))

]

(B.80)

and

ImΠFret
A (Ω, |q|, T ) = Θ(q2 − Ω2)

|q|
8

√

1 − Ω2

q2
×

[

4

π

∫ ∞

1

dx
√
x2 − 1

{

nF

( |q|
2T

(

x− Ω

|q|

))

− nF

( |q|
2T

(

x+
Ω

|q|

))}]

+

sgnΩ Θ(Ω2 − q2)
|q|
8

√

Ω2

q2
− 1

[

4

π

∫ 1

−1

dx
√

1 − x2

{

nF

( |q|
2T

(

x+
Ω

|q|

))

− 1

2

}]

(B.81)
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where Θ(x) is a Heaviside step function. Similarly,

ReΠFret
B (Ω, |q|, T ) =

Θ(q2−Ω2)
|q|
8

√

1 − Ω2

q2



1 +
16 ln 2

π

T

|q|

Ω2

q2

√

1 − Ω2

q2

− 4

π

∫ Ω
|q|

0

dx
x2

√
1 − x2

nF

( |q|
2T

(

Ω

|q| − x

))

−

4

π

∫ 1

Ω
|q|

dx
x2

√
1 − x2

nF

( |q|
2T

(

x− Ω

|q|

))

− 4

π

∫ 1

0

dx
x2

√
1 − x2

nF

( |q|
2T

(

x +
Ω

|q|

))

]

+

Θ(Ω2−q2)
|q|
8

√

Ω2

q2
− 1





16 ln 2

π

T

|q|

Ω2

q2

√

Ω2

q2 − 1
− 4

π

∫ Ω
|q|

1

dx
x2

√
x2 − 1

nF

( |q|
2T

(

Ω

|q| − x

))

−

4

π

∫ ∞

Ω
|q|

dx
x2

√
x2 − 1

nF

( |q|
2T

(

x− Ω

|q|

))

+
4

π

∫ ∞

1

dx
x2

√
x2 − 1

nF

( |q|
2T

(

x +
Ω

|q|

))

]

(B.82)

and

ImΠFret
B (Ω, |q|, T ) = Θ(q2 − Ω2)

|q|
8

√

1 − Ω2

q2
×

[

4

π

∫ ∞

1

dx
x2

√
x2 − 1

{

nF

( |q|
2T

(

x +
Ω

|q|

))

− nF

( |q|
2T

(

x− Ω

|q|

))}]

+

sgnΩ Θ(Ω2 − q2)
|q|
8

√

Ω2

q2
− 1

[

4

π

∫ 1

−1

dx
x2

√
1 − x2

{

nF

( |q|
2T

(

x+
Ω

|q|

))

− 1

2

}]

(B.83)

The expressions for the imaginary parts of ΠFret
A and ΠFret

B (B.81) and (B.83) can be

further simplified using an infinite series of Bessel functions, but there is no further

simplification of the real parts of ΠFret
A and ΠFret

B . Nevertheless, there is an important

fact that ought to be stressed: the expressions (B.80-B.83) reflect the quantum critical

scaling of the theory near its T = 0 fixed point. As can be seen from above, we can

write the following scaling relations:

ΠFret
A,B (Ω, |q|, T ) = NT PF

A,B

( |q|
T
,
Ω

T

)

(B.84)

In the limiting cases of small or large argument, both real and imaginary part of the

function PF
A,B

(

q
T
, Ω
T

)

can be evaluated analytically.
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B.6 Free energy scaling of QED3

We shall now use the results of the previous section to compute the T dependence

of the thermodynamic free energy from which we can find the electronic contribution

to the specific heat. Since to order 1/N the effective action for the gauge field is

quadratic, we can perform the functional integral over its two ”modes” exactly. Thus,

F =
1

β
ln(Det(ΠA)) +

1

β
ln(Det(ΠB)), (B.85)

where ΠA = q2

q2+Ω2 (Π
0
A + ΠF

A) and ΠB = Π0
B + ΠF

B. In addition we have,

F =
1

β

∑

Ωn

∫

d2q

(2π)2

(

ln [ΠA(iΩn,q)] + ln [ΠB(iΩn,q)]
)

. (B.86)

Now, ln(z) is analytic in the upper complex plane with a branch-cut along the x

axis. Recognizing this fact, we can trade the summation over the bosonic Matsubara

frequencies Ωn = 2πnT for an integral along the branch cut:

1

β

∑

Ωn

ln [ΠA,B(iΩn,q)] =

∮

Γ

dz

2πi

ln [ΠA,B(z,q)]

eβz − 1

=

∫ ∞

−∞

dΩ

2πi

ln [ΠA,B(Ω + i0+,q)] − ln [ΠA,B(Ω − i0+,q)]

eβΩ − 1

= 2

∫ ∞

−∞

dΩ

2π

Im ln [ΠA,B(Ω + i0+,q)]

eβΩ − 1

= 2

∫ ∞

−∞

dΩ

2π

1

eβΩ − 1
tan−1

(

ImΠret
A,B(Ω,q)

ReΠret
A,B(Ω,q)

)

(B.87)

Now, the crucial observation about the polarization functions is that they can be

rescaled as

ΠFret
A,B (Ω, |q|, T ) = NTPF

A,B

( |q|
T
,
Ω

T

)

Π0ret
A,B(Ω, |q|, T ) =

T 2

e2
P0
A,B

( |q|
T
,
Ω

T

)

. (B.88)

This can be used to argue that the temperature dependence of free energy reads

F = −NT 3 3ζ(3)

4π
+ T 3Φ

(

T

Ne2

)

, (B.89)
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where the fist term is the contribution from N free 4−component Dirac fermions

and the second term comes from the interaction with the gauge field. By numerical

integrations we have found out that the function Φ(x) is regular at x=0 (there are

two log singularities coming from ΠA and ΠB which cancel). This result shows that

there is no anomalous dimension in the free energy i.e. that the z = 1 hyperscaling at

the QED3 quantum critical point holds. Therefore, the leading scaling of the specific

heat in finite T QED3 is cv ∼ T 2.
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