PHASE TRANSITIONS AND MICROSCOPIC ENVIRONMENTS IN
\(\text{TlH}_2\text{PO}_4 \) (TDP) AND \(\text{TlH}_2\text{AsO}_4 \) (TDA) SYSTEMS

CHEOL EUI LEE,\(^1\) CHANG HOON LEE,\(^1\) KYU WON LEE,\(^1\)
KWANG-SEI LEE,\(^2\) N. S. DALAL,\(^3\) and R. FU\(^3\)
\(^1\)Department of Physics, Korea University, Seoul 136-701, Korea;
\(^2\)Natural Science Research Institute, Jeonju University, Jeonju 560-759,
Korea
\(^3\)Department of Physics, Inje University, Kimhae 621-749, Korea;
\(^4\)Department of Chemistry, Florida State University and National High
Magnetic Field Laboratory, Tallahassee, FL 32306, USA

(Received in final form November 24, 2001)

Nuclear magnetic resonance has been employed to study the phase
transitions and microscopic structures in \(\text{TlH}_2\text{PO}_4 \) (TDP) and \(\text{TlH}_2\text{AsO}_4 \)
(TDA) systems. The phase transitions were sensitively reflected in the
rotating frame spin-lattice relaxation probing the ultra-slow
microdomain motions. A prominent thermal hysteresis in the \(^1\)H NMR-
\(^{75}\)As NQR cross relaxation in TDA attributed to a ferroelastic glassy
nature was also observed. Besides, our high resolution \(^{31}\)p NMR
measurement further elucidated the nature of the microscopic
environments and the phase transitions in the TDP system.

Keywords \(\text{TlH}_2\text{PO}_4 \); \(\text{TlH}_2\text{AsO}_4 \); NMR; Phase transitions;
Microdomains
1. INTRODUCTION

TlH$_2$PO$_4$ (TDP) and TlH$_2$AsO$_4$ (TDA) are interesting hydrogen-bonded systems that undergo two major phase transitions [1]. While they are closely related to the KDP (KH$_2$PO$_4$) type crystals, the very short hydrogen bond lengths and the very heavy mass of the Tl$^+$ ion are peculiar to these systems [2]. These features play an important role in the phase transitions. In TDP and TDA the low-temperature (II-III) antiferroelectric phase transition occurs at $T_c=230$ K and $T_c=251$ K, and the high-temperature (I-II) ferroelastic phase transition at $T_c'=364$ K and $T_c'=391$ K, respectively. In our previous publications we have given a detailed description of the systems and revealed the nature of the phase transitions and the microdomain structures [3,4]. In order to elucidate the microscopic environments in the TDP and TDA systems, we have employed laboratory and rotating frame proton spin-lattice relaxation measurements as well as 31P high resolution NMR measurements.

2. EXPERIMENT

Polycrystalline TDA and TDP samples were used in this work for the NMR measurements. The laboratory frame 1H NMR measurements were made at 13.5 and 45 MHz, and the rotating frame spin-lattice relaxation measurements were made using a 200 MHz spectrometer at the rotating frame frequency of 55 kHz. The high resolution 31P magic angle spinning (MAS) NMR measurements for TDP were made at the Larmor frequency of 243 MHz at the spinning frequency of 3 kHz.

3. RESULTS AND DISCUSSION

While the phase transitions were not well reflected in the laboratory
frame spin-lattice relaxation in the TDP and TDA systems, they were sensitively reflected in the rotating frame spin-lattice relaxation as shown in Fig. 1, indicative of ultra-slow motions, as previously reported [3,4]. The spin-lattice relaxation pattern below the ferroelastic phase transition temperature was not single-exponential but was well fitted by a stretched-exponential form, \(M(t) = M_o \exp\left(-\left(t/T_{1p}\right)^{1-n}\right) \), which can be attributed to a random distribution of the correlation time [5].

![Temperature dependence of the rotating frame spin-lattice relaxation time T1p in TDA. The inset shows the temperature dependence of the exponent n.](image)

random distribution of the correlation time can be ascribed to a random distribution of proton double wells, which may be explained by the random distortion of PO4/AsO4 tetrahedra as will be further discussed in the following.

In Fig. 2 is shown the temperature dependence of the spin-lattice
relaxation time for the TDA sample measured at 13.5 MHz upon heating and then cooling. An apparently complex temperature dependence can be attributed to the 1H NMR-75As NQR (nuclear quadrupole resonance) cross relaxation, for which two minima in the spin-lattice relaxation time are expected at around 310 and 350 K due to the lifting of the NQR frequency degeneracy in the magnetic field of 13.5 MHz 1H NMR [6].

![Graph showing temperature dependence of spin-lattice relaxation time in TDA measured at 13.5 MHz upon heating and then cooling.](image)

FIGURE 2 Temperature dependence of the spin-lattice relaxation time in TDA measured at 13.5 MHz upon heating and then cooling.

As the 13.5 MHz 1H NMR relaxation in fact sensitively reflects the 75As NQR relaxation, which in turn is dictated by the electric field gradient (EFG) distribution, the pronounced thermal hysteresis observed in Figure 2 can readily be attributed to that in the microscopic environments represented by the EFG distribution. The strength of the EFG tensor probed by 75As NQR is expected to depend on the distortion of the AsO$_4$ tetrahedra, and the thermal hysteresis of the cross relaxation in Fig. 1 is attributed to that of the spontaneous distortion of the AsO$_4$
tetrahedra, or, possibly to the ferroelastic glassy nature in the TDA system.

![Diagram](image)

FIGURE 3 Temperature dependence of the 31P isotropic chemical shift in TDP. The inset shows the linewidth, which shows marked linewidth changes through the phase transitions.

Figure 3 shows the temperature dependence of the 31P isotropic chemical shift in TDP upon heating. The isotropic chemical shift shows a drastic temperature dependence including sign inversion in the ferroelastic phase. From the temperature independence of the average isotropic chemical shift, the ferroelectric transition in KDP was concluded to be a pure structural one with no change in the electronic structure [7]. On the other hand, the strong temperature dependence of the isotropic chemical shift in TDP is indicative of an electronic instability due to a strong deformation of the PO$_4$ tetrahedra in the ferroelastic phase. Marked linewidth changes through the phase transitions shown in the inset in Fig. 3 elucidates an evolution of
inhomogeneous environments around the PO₄ tetrahedra in the ferroelastic phase. A strong deformation of the PO₄ tetrahedra observed in the isotropic chemical shift appears to be responsible for the inhomogeneity.

In summary, TlH₂PO₄ and TlH₂AsO₄ systems were investigated by means of 1H NMR spin-lattice relaxation measurements as well as high resolution 31P NMR measurements. As a result, a strongly inhomogeneous nature of the microscopic environments in the systems was revealed, which can be attributed to the distortion of the PO₄/AsO₄ terahedra and a random distribution of the proton double wells.

ACKNOWLEDGMENTS

This work was supported by the Korea Science and Engineering Foundation (996-0200-003-2). The work at the National High Magnetic Field Laboratory was supported by the National Science Foundation. Measurements at the Korea Basic Science Institute (KBSI) are acknowledged.

REFERENCES