Partitioning of Ru, Rh, Pd, Re, Ir, and Au between Cr-bearing spinel, olivine, pyroxene and silicate melts

K. Righter, A. J. Campbell, M. Humayun, and R. L. Hervig

1Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA
2Department of the Geophysical Sciences, 5734 S Ellis Avenue, University of Chicago, Chicago, IL 60637, USA
3Center for Solid State Science, Arizona State University, Tempe, AZ 85287, USA

(Rceived March 11, 2003; accepted in revised form July 23, 2003)

Abstract—A series of high temperature experiments was undertaken to study partitioning of several highly siderophile elements (HSE; Ru, Rh, Pd, Re, Os, Ir, Pt and Au) between Cr-rich spinel, olivine, pyroxene and silicate melt. Runs were carried out on a Hawaiian ankaramite, a synthetic eucrite basalt, and a DiAn eutectic melt, at one bar, 19 kbar, and 20 kbar, respectively, in the temperature range of 1200 to 1300°C, at oxygen fugacities between the nickel-nickle oxide (NNO) and hematite-magnetite (HM) oxygen buffers. High oxygen fugacities were used to suppress the formation of HSE-rich “nuggets” in the silicate melts. The resulting oxide and silicate crystals (<100 µm) were analyzed using both SIMS and LA-ICP-MS, with a spatial resolution of 15 to 50 µm. Rhenium, Au and Pd were all found to be incompatible in Cr-rich spinel (Dsp/melt = 0.0012–0.21, Dsp/melt = 0.076, Dsp/melt = 0.14), whereas Rh, Ru and Ir were all found to be highly compatible (Dsp/melt = 41–530, Dsp/melt = 76–1143, Dsp/melt = 5–22000). Rhenium, Pd, Au and Ru were all found to be incompatible in olivine (Dol/melt = 0.017–0.073, Dol/melt = 0.12, Dol/melt = 0.12, Dol/melt = 0.23), Re is incompatible in orthopyroxene and clinopyroxene (Dpx/melt = 0.013, Dpx/melt = 0.18–0.21), and Pt is compatible in clinopyroxene (Dpx/melt = 1.5). The results are compared to and combined with previous work on HSE partitioning among spinel-structured oxides, and applied to some natural magmatic suites to demonstrate consistency.

1. INTRODUCTION

Spinels are a common liquidus phase in ultrabasic and basic melts and are known to control transition metal concentrations (e.g., Ni, Co, Cr, V) in magmas during differentiation (e.g., Irving, 1978). Many magmatic suites show correlations between Ni or Cr with highly siderophile elements (HSEs, which are the platinum group elements, Au and Re), especially Ir, Ru and Os (e.g., Brügmann et al., 1987; Puchtel and Humayun, 2000; Righter et al., 2000; Puchtel and Humayun, 2001). Oxide mineral separates from ore deposits are commonly enriched in HSEs (Razin and Khomenko, 1969; Agiorgitis and Wolf, 1978; Page, 1984; Parry, 1984; Auge, 1988). Furthermore, many experimental studies (Krutzsch and Kemmeler-Sack, 1983; Capobianco, 1993, 1998; Righter and Downs, 2001) have produced HSE-rich oxides, showing the potential importance of these phases in hosting such elements. Whether the correlations between Ni and HSEs are due to olivine or chromian-spinel fractionation (or both), or require the fractionation of trace HSE minerals, has remained uncertain, but resolution of this question is important for a better understanding of HSE behavior in basic and ultrabasic systems (e.g., Puchtel and Humayun, 2001).

Experimental efforts to resolve this problem have so far focused on Fe2+- and Al-bearing spinels (Capobianco and Drake, 1990; Capobianco et al., 1994). These studies have demonstrated a clear compatibility of Ru and Rh in such spinels, as well as incompatibility of Pd. However, applicability of these results to basaltic and ultrabasic systems may be inappropriate due to large differences in crystal chemistry and issues of inverse (e.g., magnetite) vs. normal (e.g., spinel or chromite) spinels.

An additional hindrance to progress on spinels is the so-called nugget effect that plagues experimental geochemistry of the HSEs. The solubility of HSEs (e.g., Pt, Rh and Pd) in silicate melts exhibits apparently anomalous behavior at oxygen fugacities of QFM and below (e.g., Borisov and Palme, 1996; Ertel et al., 1999); solubilities are no longer a clear function of oxygen fugacity at these conditions, but rather show a generally flat slope with considerable scatter in the experimental data. It is thought that this anomalous behavior is due to the presence of nanometer scale metallic flakes that are suspended within the silicate melt, interfering with the analysis and thus obscuring the true solubility of the element in silicate melt (e.g., Lindstrom and Jones, 1996). As this problem is not well understood or constrained, it has been necessary to carry out experiments at high oxygen fugacity, where the above effects are not observed. Although this high fO2 region does not overlap with the range of oxygen fugacities defined by MORB or abyssal peridotite, it is within the field of more oxidized terrestrial magmas. An understanding of HSE partitioning at high fO2 conditions can be extrapolated to aid our interpretation of low fO2 magmas.

A final obstacle for previous HSE partitioning experimentation has been the choice of analytical technique. Crystals grown in experimental systems are small (25 to 100 µm), and preclude mineral separations or preconcentrations for bulk analyses. Therefore, the small mineral grains must be analyzed by a microanalytical technique with comparable spatial resolution. Electron microprobe analysis (EMPA), of course, offers the...
necessary resolution, but solubilities of HSE in silicate melts are all below detection limits for EMPA. Secondary ion mass spectrometry (SIMS) offers good spatial resolution (~15 μm spot), but only a few of the HSE (e.g., Rh, Re) are ionized well enough to allow analysis. Laser ablation ICP-MS (LA-ICP-MS) allows analysis of all the HSE at very high sensitivity, but because sensitivity is a function of laser spot size, analysis of small experimental samples can be compromised.

In a new set of experiments, we widen the compositional range of experimentally determined spinel-melt partitioning to include Cr-rich spinels. Several runs also contained olivine or pyroxene, and partition coefficients for these phases were measured as well. Runs were carried out at oxygen fugacities between the nickel-nickel oxide (NNO) and hematite-magnetite (HM) oxygen buffers, and are analyzed using both SIMS and LA-ICP-MS. The results are compared to previous work on HSE partitioning among spinel-structured oxides. The new experimental partition coefficients are also compared with partitioning observed in natural mineral-melt pairs (Puchtel and Humayun, 2001) and then applied to explain the HSE fractionation trends in natural magmatic suites from Kostomuksha (Puchtel and Humayun, 2000), Vetreny (Puchtel and Humayun, 2001), Cape Smith Fold Belt (basaltic komatiites; Barnes and Picard, 1993) and Hawaii (HSDP basalt; Hauri et al., 1996; Rhodes, 1996), for which published HSE data are available.

Table 1. Chemical analyses of starting materials.

<table>
<thead>
<tr>
<th>Run</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>Cr₂O₃</th>
<th>FeO*</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>P₂O₅</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ank</td>
<td>43.66</td>
<td>2.97</td>
<td>13.13</td>
<td>—</td>
<td>14.84</td>
<td>0.21</td>
<td>9.75</td>
<td>12.12</td>
<td>2.5</td>
<td>0.86</td>
<td>0.37</td>
<td>100.41</td>
</tr>
<tr>
<td>Euc</td>
<td>50.00</td>
<td>—</td>
<td>13.00</td>
<td>—</td>
<td>19.0</td>
<td>—</td>
<td>7.0</td>
<td>11.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>100.0</td>
</tr>
<tr>
<td>DiAn</td>
<td>50.3</td>
<td>—</td>
<td>15.4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>10.8</td>
<td>23.5</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table 2. Summary of run conditions and products.

<table>
<thead>
<tr>
<th>Run</th>
<th>P (kb), T (°C)</th>
<th>Buffer</th>
<th>log fO₂</th>
<th>Dopant</th>
<th>Capsule</th>
<th>Starting composition*</th>
<th>Metal*</th>
<th>Duration</th>
<th>Ol-liq</th>
<th>Phases</th>
</tr>
</thead>
<tbody>
<tr>
<td>158A</td>
<td>0.001, 1300</td>
<td>HM</td>
<td>−1.65</td>
<td>Ru, Cr, Ni (1 wt%)</td>
<td>AuPd ank</td>
<td>Ru</td>
<td>52</td>
<td>—</td>
<td>gl, sp</td>
<td></td>
</tr>
<tr>
<td>158B</td>
<td>0.001, 1300</td>
<td>HM</td>
<td>−1.65</td>
<td>Rh, Os, Cr (1 wt%)</td>
<td>AuPd ank</td>
<td>RhOsAuPd</td>
<td>52</td>
<td>—</td>
<td>gl, sp</td>
<td></td>
</tr>
<tr>
<td>160A</td>
<td>0.001, 1300</td>
<td>MHO</td>
<td>−3.03</td>
<td>Ru, Cr, Ni (1 wt%)</td>
<td>AuPd ank</td>
<td>Ru</td>
<td>48</td>
<td>—</td>
<td>gl, sp</td>
<td></td>
</tr>
<tr>
<td>160B</td>
<td>0.001, 1300</td>
<td>MHO</td>
<td>−3.03</td>
<td>Rh, Os, Cr (1 wt%)</td>
<td>AuPd ank</td>
<td>RhOsAuPd</td>
<td>48</td>
<td>—</td>
<td>gl, sp</td>
<td></td>
</tr>
<tr>
<td>206A</td>
<td>0.001, 1264</td>
<td>MHO</td>
<td>−3.39</td>
<td>Re, Ni, Cr (1 wt%)</td>
<td>AuPd ank</td>
<td>RhOsAuPd</td>
<td>42</td>
<td>93/92</td>
<td>gl, sp, oliv</td>
<td></td>
</tr>
<tr>
<td>206B</td>
<td>0.001, 1264</td>
<td>MHO</td>
<td>−3.39</td>
<td>Rh, Os, Cr (1 wt%)</td>
<td>Pt ank</td>
<td>RhOs</td>
<td>42</td>
<td>91/91</td>
<td>gl, sp, oliv</td>
<td></td>
</tr>
<tr>
<td>162A</td>
<td>0.001, 1300</td>
<td>RRO</td>
<td>−5.07</td>
<td>Ru, Cr, Ni (1 wt%)</td>
<td>AuPd ank</td>
<td>RuReAuPd</td>
<td>48</td>
<td>—</td>
<td>gl, sp</td>
<td></td>
</tr>
<tr>
<td>162B</td>
<td>0.001, 1300</td>
<td>RRO</td>
<td>−5.07</td>
<td>Rh, Os, Cr (1 wt%)</td>
<td>AuPd ank</td>
<td>RhOsAuPd</td>
<td>48</td>
<td>—</td>
<td>gl, sp</td>
<td></td>
</tr>
<tr>
<td>159A</td>
<td>0.001, 1300</td>
<td>NNO</td>
<td>−6.49</td>
<td>Ru, Cr, Ni (1 wt%)</td>
<td>AuPd ank</td>
<td>Ru</td>
<td>49</td>
<td>—</td>
<td>gl, sp</td>
<td></td>
</tr>
<tr>
<td>159B</td>
<td>0.001, 1300</td>
<td>NNO</td>
<td>−6.49</td>
<td>Rh, Os, Cr (1 wt%)</td>
<td>AuPd ank</td>
<td>RhOsAuPd</td>
<td>49</td>
<td>—</td>
<td>gl, sp</td>
<td></td>
</tr>
<tr>
<td>165A</td>
<td>0.001, 1300</td>
<td>HM</td>
<td>−1.65</td>
<td>Re, Ni, Cr (1 wt%)</td>
<td>AuPd ank</td>
<td>none</td>
<td>50</td>
<td>96/94</td>
<td>gl, sp, oliv</td>
<td></td>
</tr>
<tr>
<td>165B</td>
<td>0.001, 1300</td>
<td>HM</td>
<td>−1.65</td>
<td>Ir, Ni, Cr (1 wt%)</td>
<td>AuPd ank</td>
<td>IrPdAu</td>
<td>50</td>
<td>—</td>
<td>gl, sp</td>
<td></td>
</tr>
<tr>
<td>167A</td>
<td>0.001, 1300</td>
<td>MHO</td>
<td>−3.03</td>
<td>Re, Ni, Cr (1 wt%)</td>
<td>AuPd ank</td>
<td>none</td>
<td>48</td>
<td>—</td>
<td>gl, sp</td>
<td></td>
</tr>
<tr>
<td>167B</td>
<td>0.001, 1300</td>
<td>MHO</td>
<td>−3.03</td>
<td>Ir, Ni, Cr (1 wt%)</td>
<td>AuPd ank</td>
<td>IrPdAu</td>
<td>48</td>
<td>—</td>
<td>gl, sp, oliv</td>
<td></td>
</tr>
<tr>
<td>166A</td>
<td>0.001, 1300</td>
<td>RRO</td>
<td>−5.07</td>
<td>Re, Ni, Cr (1 wt%)</td>
<td>AuPd ank</td>
<td>none</td>
<td>52</td>
<td>—</td>
<td>gl, sp</td>
<td></td>
</tr>
<tr>
<td>166B</td>
<td>0.001, 1300</td>
<td>RRO</td>
<td>−5.07</td>
<td>Ir, Ni, Cr (1 wt%)</td>
<td>AuPd ank</td>
<td>none</td>
<td>52</td>
<td>—</td>
<td>gl, sp</td>
<td></td>
</tr>
<tr>
<td>164A</td>
<td>0.001, 1300</td>
<td>NNO</td>
<td>−6.49</td>
<td>Re, Ni, Cr (1 wt%)</td>
<td>AuPd ank</td>
<td>none</td>
<td>48</td>
<td>92/90</td>
<td>gl, sp, oliv</td>
<td></td>
</tr>
<tr>
<td>164B</td>
<td>0.001, 1300</td>
<td>NNO</td>
<td>−6.49</td>
<td>Ir, Ni, Cr (1 wt%)</td>
<td>AuPd ank</td>
<td>IrPdAu</td>
<td>48</td>
<td>97/94</td>
<td>gl, sp, oliv</td>
<td></td>
</tr>
<tr>
<td>153A</td>
<td>0.001, 1300</td>
<td>NNO</td>
<td>−6.49</td>
<td>Pt, Re</td>
<td>Pt</td>
<td>DiAn Re, Pt</td>
<td>36</td>
<td>—</td>
<td>gl, cpx</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>19, 1275</td>
<td>None (Ru)</td>
<td>−<1.5</td>
<td>Pt, Re, Ru</td>
<td>Pt</td>
<td>Euc</td>
<td>Ru</td>
<td>24</td>
<td>—</td>
<td>gl, sp, cpx</td>
</tr>
<tr>
<td>118</td>
<td>20, 1275</td>
<td>Ru-Ru₂O₃</td>
<td>−1.5</td>
<td>Pt, Re, Ru</td>
<td>Pt</td>
<td>euc</td>
<td>Ru</td>
<td>50</td>
<td>—</td>
<td>gl, sp</td>
</tr>
</tbody>
</table>

* Ank = ankaramite, DiAn = diopside-anorthite eucritic composition, euc = synthetic eucrite.

* Some metals were analyzed quantitatively (Table 6); the results listed in this table are based on energy dispersive spectra obtained for each run product.

* Olivine compositions (Fo%) predicted/measured; measured values reported in Table 5, and predicted values use the method of Snyder and Carmichael (1992).
and then quenched by rapid removal from the furnace. All runs contained spinel and glass (Fig. 2, most contained metal (identified by energy dispersive spectrometry or electron microprobe analysis) and several contained olivine (Table 2).

For the experiment using the DiAn eutectic composition, the starting material was equilibrated with Re and Pt metal, in an evacuated silica tube buffered at the HM buffer at 1300°C. This run was specifically designed to measure the partitioning of Pt and Re between clinopyroxene and silicate melt at high oxygen fugacities. Large clinopyroxenes grown during this experiment were conducive to LA-ICP-MS analysis.

Two experiments at higher pressures were also included in this study. Runs 112 and 118 were carried out in a piston cylinder apparatus, at 19 and 20 kbar, respectively, and a temperature of 1275°C. Both Re-doped synthetic eucrite basalt and Ru-RuO2 oxygen buffer materials were encapsulated by Pt, which was welded shut using an argon plasma welder. Run 112 produced Ni-bearing spinel, two pyroxenes, Ru metal and silicate melt (Fig. 2). Run 118 produced Ni-bearing spinel, Ru metal, RuO2 and glass. The oxygen fugacity of Run 118 was buffered by the Ru-RuO2 oxygen buffer, and calculated (Table 2) at P and T using data reported and cited by O’Neill and Nell (1997); the oxygen fugacity of Run 112 was only constrained to be below the Ru-RuO2 oxygen buffer, since RuO2 was not present. The concentration of Re in the silicate melt (156 ppm) suggests that the oxygen fugacity was perhaps several log $f\text{O}_2$ units below the Ru-RuO2 buffer. The oxygen fugacity differences between Runs 112 and 118 can account for the distinct mineralogy of these two runs, despite similar P and T conditions.

3. ANALYTICAL

3.1. Electron Microprobe

A CAMECA SX50 electron microprobe was used to analyze major elements, Ni, Co and Cr in experimental glasses, spinels, olivines and metals (Tables 3 through 6). Operating conditions were an accelerating voltage of 15 kV and beam currents of 10 nA. Standards include both natural (albite, diopside, potassium feldspar, fayalite, rhodonite, apatite, chromite) and synthetic (Ni, Co, HSE metals, TiO2) materials. PAP $\phi - \rho - Z$ corrections were used in the data reduction (Pouchou and Pichoir, 1991). FeO and Fe2O3 in spinels were calculated by charge balance and stoichiometry. Most spinels produced in the new experiments reported here contain a large amount of Cr.

![Fig. 1. T-$f\text{O}_2$ range of experiments from this study. Buffers shown are the Ru-RuO2 (O’Neill and Nell, 1997; hematite-magnetite HM; Myers and Eugster, 1983), MnO-Mn2O3 (MHO; O’Neill and Pownceby, 1993), Re-ReO2 (RRO; Pownceby and O’Neill, 1994), Ni-NiO (NNO; O’Neill and Pownceby, 1993a) and Fe-FeO (IW; O’Neill and Pownceby, 1993a). The shaded region is the T-$f\text{O}_2$ zone of terrestrial magmas taken from Carmichael (1991).](image1)

![Fig. 2. A Back scattered electron (BSE) image of run product from run 158A (1300°C, 1 bar, and hematite-magnetite buffer; Table 2) showing large spinels, larger glassy regions and Ru metal; B BSE image of run product from run 112 (1275°C, 19 kbar, and near the hematite-magnetite buffer; Table 2) showing spinel, glass and Ru metal. Scale bars in both images are 50 µm.](image2)
3.2. Secondary Ion Mass Spectrometry (SIMS)

Rutherfordium, Rh and some Ni contents of glasses were analyzed using secondary ion mass spectrometry (SIMS) with a Cameca 6f ion probe at ASU (Table 7). SIMS analyses were obtained with a 1 nA primary beam of 16O$_2$ ions focused to a 10–15 μm spot. Positive secondary ions with excess kinetic energies of 75 ± 20 eV were allowed into the mass spectrometer. Each analysis consisted of a 5 min presputter period followed by collection of secondary ion intensities for 30Si, 101Ru, 103Rh, and 60Ni for time sufficient to reach integrated signals of at least 100 counts and usually 500 counts. Rutherfordium- and Rh-bearing basaltic glasses (from Capobianco et al., 1994) were used as standards from which calibration curves of 101Ru/103Rh and 60Ni were constructed (Fig. 3). Several runs contained small concentrations of Ni (<300 ppm) and these were also determined.
by SIMS using a set of Ni-bearing glasses as standards (from Righter, 2002). Typical error on a SIMS trace element analysis is 10% (20% error on a given partition coefficient; Table 7), and is attributable mainly to counting statistics.

3.3. Laser Ablation ICP-MS

Trace element concentrations of several HSEs were analyzed by laser ablation ICP-MS (Table 8). Locations to be analyzed were first selected from polished sections of the experimental run products, using backscattered electron images acquired with either the SX-50 electron microprobe (Arizona) or the JEOL 5800-LV scanning electron microscope (SEM) at The University of Chicago. Laser ablation ICP-MS analyses were performed using a CETAC LSX-200 laser ablation peripheral with a magnetic sector ICP mass spectrometer, the Finnigan single collector at the University of Chicago. Laser ablation ICP-MS analyses were performed using a CETAC LSX-200 laser ablation peripheral with a magnetic sector ICP mass spectrometer, the Finnigan Element, using techniques similar to those described in Campbell and Humayun (1999) and Campbell et al. (2002). The dimensions of each laser ablation pit were adjusted according to the grain size of the phase being analyzed, and ranged from 15 to 100 \(\mu \text{m} \) in diameter and approximately 10 to 25 \(\mu \text{m} \) deep. The laser was operated at 10 Hz for 2 to 5 s for each analysis, and data collection from the mass spectrometer continued for ~20 s as the signal reached a maximum and decayed away. During data collection the mass spectrometer was swept repeatedly over the mass range of interest with a period of ~0.7 s, and counts were accumulated at selected masses. A subset of the following isotopes was monitored during each analysis: 25Mg, 51Cr, 57Fe, 60Ni, 103Ru, 103Rh, 105Pd, 187Re, 192Os, 193Ir, 195Pt, 197Au. These isotopes were chosen to maximize signal-to-noise ratios and to minimize overlap with isotopes of neighboring elements or background sources, particularly 13C\(^{12}\)C\(^{+}\), 40Ar\(^{14}\)N\(^{+}\), and 40Ar\(^{16}\)O\(^{+}\). Background and isobaric interferences were subtracted from the time-integrated signal using the average of 3 blank measurements that were run immediately before and/or after each set of analyses; the detection limit of each measurement was set as 3 standard deviations above the average blank.

The production rates of many potential oxide (MO/M\(^{+}\)) and argide (MAR/M\(^{+}\)) interferences were determined from tests conducted on the NIST reference standards SRM 1158 and SRM 611. Using SRM 1158, which has high Ni and Cu but very low PGE abundances, the production rate of NiAr\(^{+}\) and CuAr\(^{+}\), which interfere at 101Ru and 105Pd, respectively, were both determined to be MAR\(^{+}/M^{+} \approx 8 \times 10^{-5}\) (Table 9). SRM 611 has many lithophile elements doped to ~500 ppm levels, but has negligibly low Ru, Os, and Ir contents. In the limiting assumption that all blank-corrected signals measured at masses corresponding to these elements in SRM 611 are produced by oxide and/or argide interferences, upper limits were placed on MO/M\(^{+}\) and MAR/M\(^{+}\) production rates, and these are listed in Table 9. The Pd abundance of SRM 611 is nonnegligible (Sylvester and Eggins, 1997) but still permitted an upper limit of 89\(^{\text{Ar}}\)/16O production to be determined based on the excess 105Pd compared to other Pd masses (Table 9). It was previously known that oxide interferences in LA-ICP-MS are much lower than those in solution nebulization ICP-MS, due to the lack of a solution matrix (Sylvester and Eggins, 1997). Based on the trace element abundances of the natural ankaramite starting material (Chen et al., 1991) and the oxide/argide production rates shown in Table 9, the interferences on 105Ru, 105Pd, and 193Ir are determined to be <1% of the magnitude of the LA-ICP-MS analyses reported in this study, and usually much smaller. Under the further assumption that oxide and argide interferences on 187Re, 195Pt, and 197Au have production rates comparable to those in Table 9, molecular interferences on Re, Pt, and Au in this study are also considered to be negligible.

Table 5. Electron microprobe analyses of silicates (average of n analyses).\(^a\)

<table>
<thead>
<tr>
<th>Run</th>
<th>Phase</th>
<th>n</th>
<th>SiO(_2)</th>
<th>TiO(_2)</th>
<th>Al(_2)O(_3)</th>
<th>Cr(_2)O(_3)</th>
<th>FeO(^+)</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>NiO</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>206A</td>
<td>olivine</td>
<td>10</td>
<td>40.62</td>
<td>0.11</td>
<td>0.04</td>
<td>8.15</td>
<td>0.22</td>
<td>50.41</td>
<td>0.29</td>
<td>0.12</td>
<td>99.97</td>
<td>611</td>
</tr>
<tr>
<td>206B</td>
<td>olivine</td>
<td>12</td>
<td>38.73</td>
<td>0.04</td>
<td>0.10</td>
<td>7.74</td>
<td>0.19</td>
<td>45.01</td>
<td>0.27</td>
<td>7.55</td>
<td>99.66</td>
<td>871</td>
</tr>
<tr>
<td>165A</td>
<td>olivine</td>
<td>8</td>
<td>40.36</td>
<td>0.03</td>
<td>0.11</td>
<td>5.40</td>
<td>0.16</td>
<td>48.19</td>
<td>0.26</td>
<td>3.24</td>
<td>97.81</td>
<td>611</td>
</tr>
<tr>
<td>164A</td>
<td>olivine</td>
<td>8</td>
<td>40.26</td>
<td>0.03</td>
<td>0.10</td>
<td>9.30</td>
<td>0.16</td>
<td>47.84</td>
<td>0.31</td>
<td>1.29</td>
<td>99.40</td>
<td>571</td>
</tr>
<tr>
<td>153A</td>
<td>clinopyroxene</td>
<td>17</td>
<td>55.04</td>
<td>—</td>
<td>0.76</td>
<td>—</td>
<td>0.04</td>
<td>—</td>
<td>18.79</td>
<td>25.53</td>
<td>100.16</td>
<td>871</td>
</tr>
<tr>
<td>112</td>
<td>clinopyroxene</td>
<td>10</td>
<td>48.72</td>
<td>0.01</td>
<td>7.00</td>
<td>12.76</td>
<td>0.12</td>
<td>20.26</td>
<td>1.47</td>
<td>7.92</td>
<td>98.29</td>
<td>611</td>
</tr>
<tr>
<td>112</td>
<td>clinopyroxene</td>
<td>7</td>
<td>46.60</td>
<td>0.03</td>
<td>9.16</td>
<td>9.84</td>
<td>0.10</td>
<td>11.10</td>
<td>17.33</td>
<td>4.03</td>
<td>98.28</td>
<td>611</td>
</tr>
</tbody>
</table>

\(^a\) Standard deviations of the mean for all elements are typically 2% or less.

Table 6. Electron microprobe analyses of metals (average of n analyses).\(^a\)

<table>
<thead>
<tr>
<th>Run</th>
<th>n</th>
<th>Fe</th>
<th>Ni</th>
<th>Ru</th>
<th>Rh</th>
<th>Os</th>
<th>Re</th>
<th>Au</th>
<th>Pd</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>162B</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>57.27 — 50</td>
<td>—</td>
<td>—</td>
<td>26.05 — 40</td>
<td>9.24 — 25</td>
<td>6.01 — 31</td>
<td>98.57</td>
</tr>
<tr>
<td>159A</td>
<td>3</td>
<td>0.28 — 2</td>
<td>0.12 — 1</td>
<td>96.95 — 90</td>
<td>0.97 — 7</td>
<td>0.04 — 2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>159B</td>
<td>3</td>
<td>0.71 — 3</td>
<td>0.27 — 4</td>
<td>100.4 — 1.0</td>
<td>56.77 — 50</td>
<td>41.46 — 20</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>112</td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>99.72 — 90</td>
<td>—</td>
<td>—</td>
<td>0.14 — 8</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

\(^a\) Standard deviations of the mean for all elements are typically 2% or less.
measurements of each phase were performed, and the quoted
mined in this study. In most experiments, multiple LA-ICP-MS
cancel out in the calculation of the partition coef-
absolute abundances measured for these elements, these should
metal standard may introduce modest systematic errors in the
Although the difference between the silicate samples and this
meteorite Hoba was used as a standard (Campbell et al., 2002).
elements (Ru, Os, Ir), and in these cases metal from the iron
glass SRM 612, which has known concentrations of the ele-
isotope monitored relative to25Mg or 57Fe were determined by
electron microprobe. Instrumental sensitivity factors for each
against Mg or Fe, which were independently determined by
homogeneity in the standards, which are known to have fine
scale heterogeneities. Instrumental errors (1σ) were typically
~4% (Table 8).

4. RESULTS

4.1. Equilibrium

Attainment of equilibrium can be checked by use of the
olivine-liquid equilibrium:

$$2\text{FeO} + \text{Mg}_2\text{SiO}_4 = 2\text{MgO} + \text{Fe}_2\text{SiO}_4,$$

Olivine compositions produced in a subset of runs (see Tables 2
and 5) are in good agreement with the compositions predicted
by estimating X_{FeO} in the silicate liquid as a function of
temperature and oxygen fugacity, using the expression in Kress
and Carmichael (1991), and the predictive equation of Snyder
and Carmichael (1992). Chromites produced in most experi-
ments were slightly zoned from core to rim in terms of FeO,
Cr$_2$O$_3$, and MgO, but this is thought to have only a small effect
on equilibrium partitioning of the HSE. With the exception of
the Ir-bearing experiments, concentrations of HSE in both the
crystals and glasses were nearly homogeneous and reproduc-
table (Tables 7 and 8).

4.2. HSE Solubility in Silicate Glasses

Many previous studies of HSE partitioning have encountered
a problem with submicroscopic metallic flakes interfering with
analyses of glasses, especially when experimental oxygen fu-
gacities were low (e.g., Borisov and Palme, 1996; Walter et al.,
2000). As noted above, the relatively high oxygen fugacities at
which our experiments were conducted were chosen to circum-
vent the formation of such metallic flakes. Additionally, the
LA-ICP-MS signal was monitored for “spikes” that would
indicate the presence of HSE-rich nuggets. Conditions fostering
the stability of nuggets should not be confused with conditions
of metal saturation. For example, both run products shown in
Figure 2 are from runs carried out at Ru metal saturation, but at
an oxygen fugacity higher than where Ru-rich micro-nuggets
have been reported. For experiments that were saturated with
a metal phase, we can compare our HSE solubilities to those of
previous studies.

Rhenium concentrations in some of the glasses are high, but
still in agreement with previous work on Re solubility. For example,
the work of both Ertel et al. (2001) and Righter and Drake (1997)
shows that wt% levels of Re$_2$O$_3$ (0.1 to 3.0 wt%) are expected at high oxygen fugacities. As the present experi-

| Table 7. Summary of SIMS data and partition coefficients.* |
Run	101Ru/30Si glass	Ru in glass (ppm)	Ru in chromite (EMPA, ppm)	D(Ru)
Run	101Rh/30Si glass	Rh in glass (ppm)	Rh in chromite (EMPA, ppm)	D(Rh)
158A	5.30×10^{-4}	217 (20)	21600 (1000)	100 (10)
160A	2.89×10^{-6}	1.18 (12)	—	—
162A	1.93×10^{-6}	1.05 (10)	1200 (60)	1143 (115)
159A	2.02×10^{-6}	0.83 (8)	—	—

* Numbers in parentheses represent the standard deviation from the
mean of the analyses (see text).
ments were not saturated with either Re or a Re-oxide, the Re concentrations in the glass are variable and do not correlate with oxygen fugacity. The valence of Re may be Re^{3+} or Re^{4+} as suggested by its compatibility in spinels (Righter and Downs, 2001), or it may be higher, as suggested by its solubility in silicate melt as a function of f_{O_2} (Ertel et al., 2001). Glass from experiment 158A at the HM buffer and 1300°C contained 17 ppm Au and 82 ppm Pd (Table 8). These values are in agreement with the study of Borisov and Palme (1996) who measured between 10–20 ppm Au, and 70 to 90 ppm Pd in silicate melts, under similar T-X-f_{O_2} conditions. The nugget effect for Rhodium concentrations in glasses from this study range from 5 to 12 ppm (Table 7), and these are in agreement with concentrations measured by Ertel et al. (1999) in glasses that were equilibrated with PtRh metal at 1300°C and similar oxygen fugacities. Borisov and Nachtwey (1998) found that Ru dissolves in CMAS composition silicate melt at concentrations between 1 and 100 ppm in the oxidized region, similar to the range measured in glasses in this study (1 to 120 ppm; Tables 7 and 8). Finally, the very low Ir concentrations measured in
Table 9. Upper limits of oxide and argide interference rates determined by LA-ICP-MS analysis of NIST SRM 611 and SRM 1158.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Interfering molecule</th>
<th>MO<sup>+</sup>/M<sup>+</sup> or MAr<sup>+</sup>/M<sup>+</sup></th>
<th>MO<sup>-</sup>/M<sup>-</sup> or MAr<sup>-</sup>/M<sup>-</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>195Hg<sup>193</sup>Ir</td>
<td>195Hg<sup>193</sup>Ir</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>193Hg<sup>191</sup>Ir</td>
<td>193Hg<sup>191</sup>Ir</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>191Hg<sup>189</sup>Ir</td>
<td>191Hg<sup>189</sup>Ir</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>189Hg<sup>187</sup>Ir</td>
<td>189Hg<sup>187</sup>Ir</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

5. DISCUSSION

5.1. Spinel/Melt Partition Coefficients

The partition coefficients for Re determined here are all lower than unity, indicating that Re is incompatible in Cr-rich spinel. There is no systematic dependence upon oxygen fugacity as might be expected due to possible valence changes in Re from 3 + to 4 + to 6 + as oxidized conditions are attained (Fig. 4). However, the variations in D(Re) appear to be a function of the Re content of the spinel, within the 1 bar series of experiments (where Re contents vary from 1 ppm to > 100 ppm), but results from higher pressure experiments do not follow that trend (Fig. 4). These values are all much lower than the upper bounds reported by Sattari et al. (2002), in which it was unclear if Re was compatible or incompatible in spinels. Regardless of what is causing the variation in D(Re) spinel/melt in this study, all results indicate incompatibility.

Chromite/melt partition coefficients for Au and Pd determined here are 0.076 and 0.14, respectively, showing clear incompatibility in Cr-rich spinel. This might be expected since both elements have a valence of 1 + in silicate melts (Borisov and Palme, 1996). Capobianco et al. (1994) also report the incompatibility of Pd in magnetite-rich spinels, and Mitchell and Keays (1981) report low Pd concentrations in spinel mineral separates from spinel peridotites. The D(Pd) chromite/melt of 1.60 reported by Puchtel and Humayun (2001), based on measurements of mineral separates from komatiitic basalts from the Vetreny Belt, could be attributed to the presence of Pd-rich sulfide inclusions in the chromite, or perhaps another minor Pd-rich phase.

Rhodium has previously been shown to be compatible in inverse spinels such as magnetite and normal spinels such as MgAl₂O₄ (Capobianco and Drake, 1990; Capobianco et al., 1994, Fig. 5), with D(Rh) ranging from 90 to 400. The results of this study show that addition of Cr-bearing components does not change the compatible nature of Rh—the range from this study is 40 to 500 (Fig. 5). The latter high values are from spinels with an inverse structure, and it is possible that inverse spinels show a greater affinity for Rh than do normal spinels. On the other hand, the highest D(Rh) spinel/melt values are from those experiments with the highest concentrations of Rh (Fig. 5); if non-Henrian effects observed for Ni, Co and V (Righter, 2002) are also true for Rh, then the high D values may be a function of the Re content of the spinel, as has been observed for other elements in spinels (Ni, Co, V; Righter, 2002), but this does not hold true for the entire dataset and thus awaits further investigation.
confirmed by future studies. For the purposes of modelling natural suites below, a value of D(Rh) spinel/melt = 75 is used, derived from the most reduced experiments containing Cr-bearing spinel.

Ruthenium has also previously been shown to be highly compatible in studies of experimental inverse spinels such as magnetite and experimental normal spinels such as MgAl\(_2\)O\(_4\) (Capobianco and Drake, 1990; Capobianco et al., 1994) and in measurements of mineral separates from komatiitic basalts from the Vetreny Belt (D(Ru) chromite/melt = 151; Puchtel and Humayun, 2001). The results of this study show that while addition of Cr-bearing components does not change the compatible nature of Ru, comparison of D(Ru) at the same temperature and oxygen fugacity reveals that Cr-bearing spinels always have lower D(Ru) than magnetite. This indicates that inverse spinels have a greater affinity for Ru than normal spinels. The runs at lowest oxygen fugacity have the highest value, suggesting there might be a valence change in Ru from 4+ to 3+ across this f\(O_2\) range (Fig. 6). In addition, within the data sets of Capobianco et al. (1994) and Capobianco and Drake (1990), there is a trend of increasing D(Ru) spinel/melt with increasing Ru concentration in the spinel. If non-Henrian effects observed for Ni, Co and V (Righter, 2002) are also true for Ru, then the high D values could be attributed to high Ru concentrations in the spinels. Finally, one of the runs (158A) was analyzed by both SIMS and LA-ICP-MS and although there are differences in the absolute numbers, the agreement in D(Ru) is very good (Tables 7 and 8). For the purposes of modelling natural suites below, a value of D(Ru) spinel/melt = 1000 is used, again, derived from the most reduced experiments, and those with Cr-bearing spinel.
for the purposes of modelling natural suites below a range of D(Ir) spinel/melt values is used, from 200 to 2000.

5.2. Olivine/Melt and Pyroxene/Melt Partition Coefficients

Rhenium, Pd and Au are all incompatible in olivine, with values between 0.01 and 0.12 (Table 8). The low values for D(Re) overlap those found in earlier studies (~0.01) by Righter et al. (2000). This is supported by the general trends of increasing concentration of all three elements with fractionation or differentiation. For example, the MORB suites considered below exhibit increasing Re, Pd and Au with decreasing MgO, Ni or Cr. In addition, Puchtel and Humayun (2001) reported a D(Pd) olivine/melt of 0.03, based on measurements of olivines separates from komatiitic basalt from the Vetreny Belt. For the purposes of modelling olivine-bearing natural suites below, we use values of 0.1 for D(Au) and D(Pd) and 0.01 for D(Re).

The value of D(Ru) olivine/melt measured here (0.23; Table 8) is in agreement with work reported by Capobianco et al. (1991), where Ru is incompatible (0.2 to 0.8), and is temperature dependent. However, the value measured here is lower than values reported by Brenan et al. (2002), and this is due to decreasing D(Ru) olivine/melt with increasing f_O_2. Our low value of 0.23 falls at a higher f_O_2 (HM) than the range they measured from 0.6 (QFM+4) to 2.2 (QFM+1). This trend is presumably reflecting the increasing valence of Ru from 3+ to 4+ as oxygen fugacity increases. Thus, in natural systems, where oxygen fugacity is closer to QFM, Ru will be more compatible in olivine (e.g., D(Ru) = 1.7 in Puchtel and Humayun, 2001), and we choose a value of 1 for D(Ru).

Clinopyroxene is a significant host phase for several HSE. Our results here show that Pt is mildly compatible in clinopyroxene, with a D(Pt) = 1.5. Recent work by Hill et al. (2000) shows that Ru is also mildly compatible in clinopyroxene, with a strong dependence upon Ca-Tschermak’s component. Rhenium is incompatible in clinopyroxene and orthopyroxene, with D’s < 0.2, in agreement with the results of Watson et al. (1987) of D(Re) clinopyroxene/melt = 0.05 (experiments carried out in air), and results of Righter and Hauri (1998) of D(Re) orthopyroxene/melt = 0.18 (experiments carried out near QFM buffer).

5.3. HSE Behavior during Differentiation of Basic Magmas

Positive correlations between Ni or Cr and PGEs such as Ru, Os and Ir in basaltic rock suites suggest that the latter three PGEs are compatible in spinels. However, because many basic rocks suites are sulfide saturated, and sulfide is a major control of Re and PGE concentrations, the role of sulfide must be better defined to interpret such trends. As a result, the role of chromite can be best defined in suites that are sulfide under-saturated, which can be determined by examining total S and PGE contents of the silicate melts. With this approach in mind, we will illustrate that Re is incompatible and Ir, Ru and Rh are compatible in spinels, by utilizing the results of these experiments and applying them to several natural basaltic or ultrabasic rock suites. Major elements in a given suite were modeled using the MELTS computer application (Ghiorso and Sack, 1994), and the amount of spinel or chromite involved in the fractionation is defined by fitting Cr-MgO trends in a given suite. The HSE spinel/melt partition coefficients determined here, together with partition coefficient data for olivine and pyroxene, are then used to evaluate the role of spinel in controlling HSE concentrations in these suites.

The evolution of the Kostomuksha komatiite suite is characterized by liquidus olivine across a large composition range (40 to 24 wt% MgO; Fig. 7). Chromite does not stabilize until the liquid has ~24 wt% MgO, and the suite is sulfide-under-saturated (Puchtel and Humayun, 2000). Thus any compositional variation in trace elements can be attributed entirely to olivine fractionation. A Rayleigh fractionation model can adequately reproduce the trends if Pd is highly incompatible in olivine and Ru is mildly compatible. The former is supported
Partitioning of Ru, Rh, Pd, Re, Ir, and Au

by our new data, and the latter by the results of Brenan et al. (2002).

The Vetreny Belt komatiitic basalt lava lake has olivine and chromite as liquidus phases across a wide temperature interval (Puchtel and Humayun, 2001), thus allowing an assessment of the role of chromite in the fractionation of Ru and Ir (Fig. 8). As with the Kostomuksha komatiites, the Vetreny Belt samples are not sulfide saturated because Cu, Pd and Pt exhibit incompatible behavior within this interval of the fractionation series; thus sulfide does not play a role in the fractionation. Crystallization of olivine alone cannot reproduce the trends of Ru and Ir with Cr or MgO (Fig. 8). Instead, Cr-rich spinel fractionation is required to lower the Ru and Ir values in the more evolved samples. The rock analyses are well fit using D(Ir) spinel/melt \(\approx 2000 \) and D(Ru) spinel/melt = 1000, in agreement with the range of D’s measured in our study. It should be noted, however, that Puchtel and Humayun (2001) obtained an empirical D(Ir) = 100 and D(Ru) = 150 from a chromite separate from a Vetreny cumulate komatite, and using these lower D values could not account for the fractionation of Ru or Ir by olivine+chromite alone. The inverse correlation of D(Ru) in spinel with log \(fO_2 \) implies that the applicable D(Ru) for a natural magma should be higher than the empirical value obtained. The discrepancy remains to be resolved.

Komatiitic basalts from the Cape Smith Fold Belt, Quebec, have been analyzed for HSE’s by Barnes and Picard (1993). Trends of Cr, Pt, Pd, Rh, Ir and MgO demonstrate the compatible nature of Ir and Rh, and the incompatible nature of Pd and Pt during differentiation of this suite (Fig. 9). The high initial Pd and Pt contents indicate that these magmas were sulfide under-saturated, and remained so until lower MgO contents, where concentrations of all HSE’s begin to drop off rapidly. The lower Ir contents compared to Rh in the more evolved samples indicate that Ir is more compatible in spinel than Rh, consistent with our partitioning results where D(Ir) spinel/melt > D(Rh) spinel/melt (Fig. 9). Partition coefficients required to successfully model these komatiites compare well with our measurements. The general observation that D(Ir), D(Os) and D(Ru) are all likely to be higher than D(Rh) spinel/melt was also made by Capobianco et al. (1994).

The incompatibility of Re in spinel and olivine is illustrated in data from the Hawaiian Scientific Drilling Project (HSDP; Fig. 10); Hauri et al., 1996; Rhodes, 1996). Re increases as Ni decreases due to fractionation of olivine and spinel; the fractionation of olivine and spinel from a basaltic parent decreases Ni due to its compatibility in olivine and spinel (Schilling et al., 1983; Righter, 2002). As Re is incompatible in olivine and spinel, the concentrations will increase during fractionation. The slope of the fractionation vector in Figure 10 is similar to the trend of the HSDP Re-Ni data, indicating that variations in these elements can be due largely to fractionation. Analyses of olivine and spinel mineral separates from komatiitic rocks also indicate Re is incompatible in both phases (Walker et al., 1999).

While our measurements of D(Re) spinel/melt shows incompatibility, there are some spinel compositions showing opposite
behavior. The suite from Volcan Alcedo in the Galapagos Islands (Righter et al., 1998) initially shows an increase in Re with decreasing Ni content and can be modeled by co-fractionation of olivine, cpx, and plag. When Ti-magnetite joins this assemblage, Re begins to decrease in the residual melt, indicating compatibility of Re in this spinel. This may relate to the Ti content or the relatively low oxygen fugacity represented by this rock suite, where Re may be reduced to a valence more compatible in the crystallizing assemblage.

The partitioning results presented here for chromite and olivine demonstrate that HSEs can be fractionated during differentiation. Fractionation of olivine and chromite, both of which will concentrate Rh, Ir, and Ru, but not Pd or Au, can lead to HSE patterns very different from the parent magma. Thus, elevated Pd/Ir, Au/Ir, and Pd/Ru ratios in differentiated basalts can be attributed both to olivine and chromite fractionation (as suggested by Capobianco et al., 1991), and to lowered solubility of Ru and the IPGEs with changing melt composition during fractionation (Capobianco et al., 1994). Both of these effects are observed in the natural sample suites discussed above.

5.4. Pt and Re in Planetary Mantles

The similar concentrations of Pt in terrestrial basalts and peridotite, and in martian basaltic shergottites and clinoxyroxenites (Jones et al., 2003) suggests that Pt has a bulk partition coefficient of approximately 1 during mantle melting. The fact that Pt is mildly compatible in clinoxyroxene (this study), coupled with its compatibility in sulfide (Fleet et al., 1991, 1996), can explain this behavior, especially for the martian nakhlites, because nakhlites contain 80–90% clinoxyroxene and also contain sulfide (Bunch and Reid, 1975). If the nakhlites crystallized from a basaltic parent magma, and the bulk D is close to unity, then Pt concentrations will be similar in the parent melt and the cumulates. In contrast, when considering more basic and ultrabasic systems, where the percentage of melting is higher (removing cpx and sulfide from the residue), a bulk D(Pt) < 1 would be expected since Pt is incompatible in chromite and olivine. This has been demonstrated for sulfide-undersaturated komatiitic and komatiitic basalt suites analyzed by Puchtel and Humayun (2000, 2001), where D(Pt) bulk = 0.52–0.53.

Finally, work by Brandon et al. (1998, 1999) has shown that radiogenic 186Os and 187Os measured in Hawaiian basalts could be explained by mixing of a high Pt/Re and high Os material into the source region of these basalts. Such a material would need enough Pt to elevate the Pt/Re ratio, and enough Os to have an effect on the high Os mantle into which it would be mixed. Addition of high Os and high Pt/Os outer core metal to the mantle meets these requirements (e.g., Brandon et al., 1998, 1999). An explanation due to crustal recycling, however, may be considered because our results show that a clinopyroxene-rich rock could have an unusually high Pt/Re ratio, based on the partition coefficients for clinoxyroxene determined here. Furthermore, if a clinopyroxene-rich and sulfide-rich rock were involved, it would be possible to create an even higher Pt/Re ratio, because D(Pt) sulfide/melt > D(Re) sulfide/melt (Jones and Drake, 1986; Fleet et al., 1996; Roy-Barman et al., 1998).

Quantitative evaluation of such a crustal recycling scenario, however, is problematic for several reasons. First, the few eclogites that have been analyzed have low Os concentrations (e.g., Esperança et al., 1997; Becker, 2000), although there are some as high as typical mantle (e.g., Pearson et al., 1995). Second, many eclogite or clinoxyroxenite samples have not been analyzed simultaneously for Pt, Os and Re all together. Whether recycled clinoxyroxenite or eclogite would have a high enough Pt/Re ratio and Os concentration to account for the Os isotopic trends reported by Brandon et al. (1998, 1999) awaits further evaluation.

5.5. Future

As spinel chemistry changes dramatically within a differentiation series, so will the partition coefficients. The combined effects of temperature, oxygen fugacity and spinel chemistry must ultimately be evaluated for Re, Os, Ir and other HSEs. The role of such factors will have to be distinguished from other factors such as valence, crystal chemistry, variations in the HSE concentrations in the spinels, melt composition, and sulfide and alloy distribution coefficients and saturation. This study has demonstrated that Cr-rich spinels can be significant hosts for Rh, Ru and Ir. The incompatibility of Pd and Au in spinel and olivine, and the mild compatibility of Pt in clinoxyroxene is also significant and will aid in our interpretation of HSE contents of basaltic rocks.

Acknowledgments—This research is supported by NSF grant EAR-0074036 (KR), EAR-0309786 (MH) and by NASA NAG5–13133 (MH). Y. Guan provided assistance with some of the SIMS work at ASU. Electron microprobe analysis was facilitated by K. Domanik at the University of Arizona and C. Schwanitz and L. Le at the Johnson Space Center. Discussions with A. Brandon, J. Jones, R. Nielsen, C. Capobianco, and M. Drake influenced this work. The reviews of M. Horan, C. Neal, and M. Norman improved the clarity of the manuscript.
REFERENCES

